
601.433/633 Introduction to Algorithms Fall 2025
Homework #3 Due: October 13, 2025, 11:59pm

Remember: you may work in groups of up to three people, but must write up your solution
entirely on your own. Collaboration is limited to discussing the problems – you may not look at,
compare, reuse, etc. any text from anyone else in the class. Please include your list of collaborators
on the first page of your submission. You may use the internet to look up formulas, definitions,
etc., but may not simply look up the answers online.

Please include proofs with all of your answers, unless stated otherwise.

1 More counters (14 points)

We saw in class that if we have a binary counter which we increment n times the total cost (measured
in terms of the number of bits that are flipped) is O(n), i.e. the amortized cost of an increment is
O(1). What if we also want to be able to decrement the counter? Throughout this problem we will
assume that the counter never goes negative – at every point in time the number of increments up
to that point is at least as large as the number of decrements.

Show that it is possible for a sequence of n operations (increments and decrements) to have
amortized cost of Ω(log n) per operation (so the total cost is Ω(n log n)). This should hold even if
we start from 0 and the counter never goes negative.

2 Heaps (13 points)

(a) (5 points) Draw all possible binary min-heaps on the keys {1, 2, 3, 4, 5}. (You may hand-draw
if you want to, but please make sure your drawings are legible).

(b) (8 points) How many different binomial heaps are there on the keys {1, 2, 3, 4, 5, 6}? Prove
your answer.

3 Range Queries (13 points)

We saw in class how to use B-trees as dictionaries, and in particular how to use them to do insert
and lookup operations. Some of you might naturally wonder why we bother to do this, when hash
tables (which we will talk about later) already allow us to do this. While there are many good
reasons to use search trees rather than hash tables, one informal reason is that search trees can in
some cases be either used directly or easily extended to allow efficient queries that are difficult or
impossible to do efficiently in a hash table.

An important example of this is a range query. Suppose that all keys are distinct. In addition to
being able to insert and lookup (and possibly delete), we want to allow a new operation range(x, y)
which is supposed to return the number of keys in the tree which are at least x and at most y.

In this problem we will only be concerned with 2-3-4 trees (B-trees with parameter t = 2).
Given a 2-3-4 tree with n elements, show how to implement range(x, y) in O(log n+k) time, where
k is the number of elements that are at least x and at most y. Prove that your solution is correct
and that it has the appropriate running time.

1

4 Union-Find (30 points)

In this problem we’ll consider what happens if we change our Union-Find data structure to not use
path compression. We will still use union-by-rank, but Find operations will no longer compress the
tree. More formally, consider the following tree-based data structure. Every element has a parent
pointer and a rank value.

Make-Set(x): Set x → parent := x and set x → rank := 0.
Find(x): If x → parent == x then return x. Else return Find(x → parent).
Union(x, y):

Let w := Find(x) and let z := Find(y).
If (w → rank) ≥ (z → rank) then set z → parent := w, else set w → parent := z.
If (w → rank) == (z → rank), set (w → rank) := (w → rank) + 1

In this problem we will analyze the running time of this variation.

(a) (10 points) Recall that the height of any node x is the maximum over all of the descendants
of x of the length of the path from x to that descendant. Prove that for every node x, the
rank of x is always equal to the height of x. Hint: use induction.

(b) (10 points) Prove that if x has rank r, then there are at least 2r elements in the subtree
rooted at x (we did this in class for the more complicated data structure which uses path
compression, but now you should do it for this version without path compression).

(c) (10 points) Using the previous two parts, prove that every operation (Make-Set, Union, and
Find) takes only O(log n) time (where n is the number of elements, i.e., the number of Make-
Set operations).

5 Hashing (30 points)

Let H = {h1, h2, . . . } be a collection of hash functions, where hi : U → {0, 1, . . . ,M − 1} for every
i and we assume that |U | = 2u and that M = 2b (the same setup as in class when we designed a
universal hash family). Recall that H is a universal hash family if Prh∼H [h(x) = h(y)] ≤ 1/M for
all x, y ∈ U .

Consider the following, slightly different definition. We say that H is a 2-universal hash family
if Prh∼H [h(x) = a ∧ h(y) = b] ≤ 1/M2 for all x, y ∈ U with x ̸= y and a, b ∈ {0, 1, . . . ,M − 1}.

(a) (10 points) Prove that any 2-universal hash family is also a universal hash family.

(b) (10 points) Prove that for every u and b with u > b ≥ 1 there is some universal hash family
from U to {0, 1, . . . ,M − 1} (with |U | = 2u and M = 2b) which is not a 2-universal hash
family. Hint: think about the constructions from class and the textbook.

(c) (10 points) Give a universal hash family from U = {0, 1, 2, 3, 4, 5, 6, 7} to {0, 1} that contains
at most four functions (and prove it is universal). Is this also a 2-universal hash family? Why
or why not?

2

	More counters (14 points)
	Heaps (13 points)
	Range Queries (13 points)
	Union-Find (30 points)
	Hashing (30 points)

