601.433 / 601.633 Introduction to Algorithms  Lecturer: Michael Dinitz, Jessica Sorrell
Topic: Introduction, Karatsuba/Strassen Date: 8/26/25

1.1 Administrative Stuff

Welcome to Algorithms! In this class you will learn the basics of the theory of algorithms. Most
importantly, you will learn how to design and analyze algorithms with an eye towards provable
performance.

This course has two different lecture sections taught by two different instructors. This is to provide
choice in lecture time to you, as well as to make lectures a bit smaller. But the content will be the
same, possibly with minor differences in slides. This is the first time we’ve done this for Algorithms

About your instructors:

e Michael Dinitz: This is my tenth time teaching this class. I generally teach it every fall, with
a few exceptions due to a sabbatical (2022) and parental leave (2023). My research is in theo-
retical CS, and is mostly in approximation algorithms, which we might touch on towards the
end of the semester. But I dabble in other areas of theory (distributed computing, differential
privacy, and other types of graph algorithms mostly) and even occasionally collaborate with
more practical people on problems in computer networking and distributed systems.

e Jessica Sorrell: This is my first time teaching this class, so feedback is appreciated! 1 started
at Hopkins last fall. My research is in machine learning theory, specifically understand-
ing the limits of learning algorithms and how to make the models they output more reli-
able/trustworthy. I use tools from theoretical computer science in my research: probability
theory, cryptography, algorithm design and analysis, NP-hardness, etc.

Prerequisites: the official prereqs are Data Structures and MFCS. All undergrads should have taken
these already, and most graduate students should have taken equivalent classes. We will quickly do
some review in the next lecture, but you should already be comfortable with asymptotic notation,
basic data structures, and basic combinatorics and graph theory. The most important thing,
though, is that you are mathematically mature: you should know how to do a formal mathematical
proof, particularly by induction. If you’re not sure whether your background is sufficient, please
contact me.

Some beginning trivia for the class:

e There are two TAs, Nathaniel Robinson and Yan Zhong, who are both CS PhD students.
There will also be approximately ten CAs. Office hours are posted on the course webpage.

e The course website is https://introalgorithmsfall25.cs. jhu.edu/. All materials can be
found there, including the syllabus with the official class policies and a tentative schedule.
The required textbook is CLRS (4th edition).


https://introalgorithmsfall25.cs.jhu.edu/

Most office hours will be normal office hours, but we will occasionally have more “recitation-
like” office hours where the TAs/CAs will work through practice problems, go over content,
and basically focus on non-homework things. We’ll keep you updated about these.

Homeworks will generally be due every 2 weeks. The first one will be released next Tuesday.
Homeworks and deadlines will be posted on the course website as they are released, so please
stay up to date. You can work in groups of at most 3, but everyone needs to do their own,
independent writeup. That is, collaboration is limited to talking and working on the problems,
and cannot include writing up the solutions. Please include who you worked with at the top
of your homework. There will likely be 6 homeworks, and you are allowed 5 total late days
(=120 late hours according to Gradescope)

Turn in homeworks on Gradescope. We require homeworks to be typed (not handwritten),
and strongly prefer that you write them up using LaTeX (resources on course webpage).

In-class midterm, probably on Oct 21. Final exam, date determined by the registrar. This
exam will be in-person.

Regular in-person quizzes (likely on Thursday lectures, although we might change this). These
will be short (10-15 minutes), and will basically be of the form “did you pay attention to the
last few lectures and homeworks”.

Grading breakdown: 30% homeworks, 10% quizzes, 40% final, 20% midterm.

This course will be “curved”, but not to a bell curve or anything fixed like that. Instead,
at the end of the class we will look at all of the combined numeric grades to see how things
shook out. If everyone did extremely well, then great! Everyone gets an A. But if everyone
does poorly, then that probably means that we made a mistake, and it’s not fair to penalize
you all for it. So we’d try to find reasonable grade boundaries so that grade still seem fair.
In the past, when Prof. Dinitz has taught this class the grade boundaries have results in the
average being approimately a B+ — a bit less than half the class got some kind of A, a bit
less than half got some kind of B, and there were a few stragglers. There is no guarantee that
the same thing wil happen this semester, but it is likely.

Please don’t cheat. Cheating makes you a bad person, and you don’t want to be a bad person.
Note that cheating includes looking up solutions on the internet or elsewhere, or even using
material in an effort to help with the assignment rather than just to learn. That is, I'm
totally fine with you saying “I don’t understand this concept, so let me look up some online
resources” — that’s great! But I am not OK with you saying “I don’t know how to do this
problem, so let me look at online resources to try to get some ideas;;. That’s true even if
you’re not explicitly looking for solutions — you should not be using outside resources to help
with assignments.

Note that this includes ChatGPT and other LLMs. I'm not going to tell you not to use LLMs
— they can be useful tools! But the only way that you’ll learn this stuff is by working on
it yourself. So you cannot use AI tools for the homeworks/quizzes/exams. But if you want
to use LLMs to work through some questions or ideas on your own that are about the class



content but not directly about an assignment, then please feel free. Just be aware that they
are often wrong, even about technical things, and tend to double down on their responses
even when incorrect.

e We will use Courselore for content questions. I've been using Piazza and Campuswire in
the past, but Courselore is from some JHU CS people, so I thought I'd give it a try this
year. If you have a question about a lecture, homework, book chapter, etc., please post it on
Campuswire instead of emailing the instructor, TA, or CAs. Not only does this get multiple
eyes on your question, it also avoids duplication since other students might have the same
question.

1.2 Course Overview

This course is about the theory of algorithms. Note the word theory: there will be no programming
assignments in this class. Instead, we will do formal mathematical proofs about algorithms and,
at the end of the course, their converse: complexity theory. We will learn how to design efficient
and correct algorithms, and also how to analyze correctness, running time, and other properties of
algorithms.

What is an algorithm? A method for solving computational problems, sometimes explained as a
recipe. At a minimum we want to have correctness: the algorithm does correctly solve the problem,
i.e. its outputs are what you think they are. Many times we also want other guarantees, e.g. that
it runs in time at most f(n) on any input of size n. This course will focus on both aspects: how to
design an algorithm, and how to prove that they meet the desired specification.

1.3 Why?

Obvious why we want to prove correctness. But why prove bounds on running time? Why not just
try on a bunch of examples to test experimentally if the algorithm is fast? Many reasons, including
but not limited to:

1. How do you know that your test instances are an accurate representation of “real-life” in-
stances? Particularly important for “low-level” algorithms — if the algorithm will be a sub-
routine for many different, larger algorithms, might encounter a huge variety of different
instances with different properties.

2. We will care about how running time changes with respect to the instance size, i.e. how
the algorithm scales. Hard (but not necessarily impossible) to determine scaling behavior
experimentally.

3. Perhaps most importantly, when we prove something about an algorithm, we wunderstand
it. Experimental evidence does not provide any understanding — it wouldn’t be able to tell
us why the algorithm exhibits the behavior, just that it does. Forcing ourselves to prove
bounds forces us to really understand what’s going on. This is particularly true when paired
with complexity theory, which lets us provide lower bounds on algorithms. If we can prove



matching upper and lower bounds, we really understand a problem.

1.4 Karatsuba Multiplication

One of the reasons that it is interesting to study algorithms is that, surprisingly often, the “obvious”
way to do something from the definition is in fact quite bad. As an example, consider vanilla
multiplication. Suppose we want to multiply two n-bit numbers X and Y (so each number is
between 0 and 2" — 1). From the definition of multiplication, we could add X to itself Y times to
get X x Y. But this takes ©(2") additions, so at least that much time!

Better idea: grade-school algorithm. Suppose we want to multiply 54 and 41:

110110 = 54
X 101001 = 41
110110
110110
+ 110110
100010100110 = 2 + 4 + 32 + 128 + 2048 = 2214

Algorithmically, we scan the second number from right to left, and each time we see a 1 we write
the first number (padded with an appropriate number of 0’s) down. We then add up each column
(with appropriate carries) to get the total. So 2n — 1 additions, and each addition takes O(n) time.
Total time: O(n?).

So this shows that sometimes the “obvious” algorithm from the definition might not be the right
one. But is the grade-school algorithm the best possible? It turns out that the answer is no: better
algorithms are possible! The following algorithm is due to Anatoli Karatsuba, from 1962. Suppose
we want to multiply X and Y, both of which are n-bit numbers. We first rewrite them:

X=2"?A+B
Yy =2"2C+D
Then we get that
XY = (2"2A+ B)(2V2C + D) = 2"AC + 2"/2AD + 2"/ BC + BD (1.4.1)

Computing XY with this formula takes four n/2-bit multiplications, three shifts, and three O(n)-
bit adds. It turns out that each shift and add can be done in O(n) time (think about this at home
if you're not sure). So if we let T'(n) be the time necessary for this algorithm, we get the recurrence
relation

T(n)=4T(n/2) + cn



where c is a constant that handles the cost of this shifts and adds. When we solve this recurrence,
we get that T'(n) = O(n?), so we unfortunately have not made any progress. But now let’s rewrite

Equation (1.4.1):
XY = 2"2(A+ B)(C + D) + (2" = 2"/%)AC + (1 - 2"/*)BD

This looks a lot more complicated, but when we count the operations we see that there are only
three n/2-bit multiplications, together with a constant number of shifts and O(n)-bit additions. So
now the recurrence relation looks like

T(n) =3T(n/2)+cn

(where the new c is larger than the old one, but still a constant). When we solve this, we get that
T(n) = O(n'823) =~ O(n'5%).

It turns out that while faster than the grade-school O(n?)-time algorithm, this still is not the fastest
possible (or even known). Using the Fast Fourier Transform (which we may discuss at the end of
the semester, time permitting), it is possible to design an O(n log?n)-time algorithm (this was first
done by Dick Karp). Even this has been improved a few times and is still being worked on: the
state of the art is an O(nlogn)-time algorithm due to David Harvey and Joris van der Hoeven
which was just published in March 19!

1.5 Matrix Multiplication

Another famous and important example of the “obvious” algorithm not being optimal is matrix
multiplication. Suppose we want to multiply matrix X and matrix Y, both of which are n x n (so
each contains n? entries). The normal algorithm (which you should all know) computes the output
(i,7) entry by computing the inner product of the i’th row of X with the j’th column of Y. Each
inner product computation involves n multiplies and adds, so takes time O(n)ﬂ Since we do this
computation for each entry of the output matrix, the total time is O(n?).

It turns out that there are faster algorithms for matrix multiplication that use the same basic ideas
as Karatsuba’s algorithm. The first, and most famous, of these is due to Volker Strassen, in 1969.
We start by breaking each of X and Y into four (n/2) x (n/2) matrices:

Al B E|F
X=eTD Y=raTa

It’s not hard to see that we can write XY using these 8 smaller (n/2) x (n/2) matrices:

AF+ BG | AF + BH

XY = GE DG [ CFoDH

!Note that here, unlike the previous example, we are assuming that a single add or multiply takes a constant
amount of time. This is an example of where the costs we use are determined from context and history.



This algorithm recursively computes 8 products of (n/2) x (n/2) matrices, and does 4 additions of
these matrices. Each addition takes time O(n?), so the running time for this algorithm is

T(n) = 8T (n/2) + cn?.

Solving this recurrence gives T'(n) = O(n?), which is not an improvement over the previous algo-
rithm. However, Strassen realized that, like with Karatsuba, there is a way to compute the same
product using fewer multiplications. In particular, we compute the following 7 products:

M, =(A+D)(E+H)
My; =(C+D)E
M = A(F — H)
M, = D(G — E)
Ms=(A+ B)H
Ms = (C —A)(E+F)
M; =(B—-D)(G+H)

You can check that these seven matrices let us compute XY as follows:

My + My — M5 + My M3 + Ms

XY =
My + My My — My + M3 + Mg

So now we’ve won! The recurrence relation for the running time is 7'(n) = 77(n/2) + cn?, which
solves to T'(n) = O(n'°827) ~ O(n?8074),

While Strassen’s algorithm was the first to break the n? barrier, it too can be improved. The first
major improvement was due to Coppersmith and Winograd, who in 1990 gave an algorithm with
running time O(n?37477). This was the best result known until recently: in 2011 Virginia Vas-
silevska Williams showed how to extend the Coppersmith-Winograd framework to get O(n2'3728642),
which was later improved by Le Gall to O(n?3728639) in 2012. In 2021 this was improved by
Josh Alman and Virginia Vassilevska Williams to O(n?-372896) "in 2024 this was improved by Vir-
ginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou to O(n?371%52)  and in 2025
(last January) this was improved to O(n?371339) by Josh Alman, Ran Duan, Virginia Vassilevska
Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. But as far as we know, there could be an
O(n?)-time algorithm for matrix multiplication that no one has figured out yet!



	Administrative Stuff
	Course Overview
	Why?
	Karatsuba Multiplication
	Matrix Multiplication

