Jessica Sorrell

Lecture 10: Disjoint Sets / Union-Find

Jessica Sorrell

September 25, 2025
601.433/633 Introduction to Algorithms
Slides by Mike Dinitz

Lecture 10: Union-Find

September 25, 2025

1/24

Meld(Hy, H2): General Case

(Almost) just like binary addition!

!

i/
e -

A

30" 23 22 48 31 17
| | | 15 mmmmeeeees 7 s 12

45 32 24 50 | |
| 28 33 25

+ 55 |

(87 29 (9 @9

(3ore3) @ @y 6) ()
49 @@ 69
D)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 2/24

Insert(H, x)

Use Meld:

» Create new heap H' with one By consisting of just x

> Meld(H, H')

Correctness: Obvious

Jessica Sorrell

Lecture 10: Union-Find

September 25, 2025

3/24

Insert(H, x)

Use Meld:
» Create new heap H' with one By consisting of just x
> Meld(H, H")

Correctness: Obvious

Running Time:
> Worst case: O(logn) (via Meld)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 3/24

Insert(H, x)

Use Meld:
» Create new heap H' with one By consisting of just x
> Meld(H, H")

Correctness: Obvious

Running Time:
> Worst case: O(logn) (via Meld)

» Amortized:
> Like incrementing a binary counter!

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 3/24

Insert(H, x)

Use Meld:
» Create new heap H' with one By consisting of just x
> Meld(H, H")

Correctness: Obvious

Running Time:
> Worst case: O(logn) (via Meld)

» Amortized:

Like incrementing a binary counter!

If we link k trees, potential goes down by k-1

Cost = # links plus 1 (for making new heap)

Amortized cost = k+1+ AP =k+1-(k-1)=2=0(1)

vV v v v

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 3/24

Extract-Min(H)

Use Meld again!
» O(log n) to Find-Min: one of the roots.
» Delete and return this root: tree turns into a new heap!
» Meld with original heap (minus the tree)

Correctness: Obvious

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 4 /24

Extract-Min(H)

Use Meld again!
» O(log n) to Find-Min: one of the roots.
» Delete and return this root: tree turns into a new heap!
» Meld with original heap (minus the tree)

Correctness: Obvious

Running Time:
> Worst-Case: O(log n) from creating new heap, Meld

» Amortized:

> Potential can go up! But by at most log n
> Amortized time at most O(log n) +log n = O(log n)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 4 /24

Introduction to Union-Find

Informal: Universe of elements, want to maintain disjoint sets.

Slightly more formally:
> Make-Set(x): create a new set containing just x (i.e., {x})
» Union(x,y): Replace set containing x (S) and set containing y (T) with single set Su T

» Find(x): Return representative of set containing x

Cor PN E D

4

NIAEEIC)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 5/24

Introduction to Union-Find

Informal: Universe of elements, want to maintain disjoint sets.

Slightly more formally:
> Make-Set(x): create a new set containing just x (i.e., {x})
» Union(x,y): Replace set containing x (S) and set containing y (T) with single set Su T

» Find(x): Return representative of set containing x

Rules: every set has a unique representative.
> If x and y are in same set, Find(x) = Find(y)
> If x and y are in different sets, then Find(x) # Find(y)

> Make-Set(x): cannot be called on the same x twice

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 5/24

Introduction to Union-Find

Informal: Universe of elements, want to maintain disjoint sets.

Slightly more formally:
> Make-Set(x): create a new set containing just x (i.e., {x})
» Union(x,y): Replace set containing x (S) and set containing y (T) with single set Su T

» Find(x): Return representative of set containing x

Rules: every set has a unique representative.
> If x and y are in same set, Find(x) = Find(y)
> If x and y are in different sets, then Find(x) # Find(y)

> Make-Set(x): cannot be called on the same x twice

Note: disjoint (and partition) by construction!

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 5/24

Introduction (II)

We'll see a few ways of doing this, from efficient to very efficient.
CLRS: extremely efficient

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 6/24

Introduction (II)

We'll see a few ways of doing this, from efficient to very efficient.
CLRS: extremely efficient

Notation and Notes:
> m operations total
> n of which are Make-Sets (so n elements)

> Assume have pointer/access to elements we care about (like last class)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 6/24

First Approach: Lists

Linked list for each set.
> Representative of set is head (first element on list)

» Each element has pointer to head and to next element, so stored as triple:
(element, head, next)

S:

v
v
x
v
N

A\/

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 7/24

First Approach: Lists

Linked list for each set.
> Representative of set is head (first element on list)

» Each element has pointer to head and to next element, so stored as triple:
(element, head, next)

S:

v
v
x
v
N

A\/

Make-Set(x); X | head | next

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 7/24

First Approach: Lists

Linked list for each set.
> Representative of set is head (first element on list)

» Each element has pointer to head and to next element, so stored as triple:
(element, head, next)

S:

v
v
x
v
N

A\/

Make-Set(x); X | head | next

Find(x): return x — head

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 7/24

Union(x, y)

@D
v
v
x

v

N

—
v

<
v

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 8/24

Union(x, y)

S: g
ot SRR
U \
. A >

v

<

y
]

Obvious approach:
> Walk down S to final element z (starting from x)
» Set z - next = y - head

» Walk down T, set every elements head pointer to x — head

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 8/24

Union(x, y)

AV

u\/ |

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 9/24

Union(x, y)

@
v
v
x
v
N

u\/ |

v
N

N\

\
\

.
AN

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 9/24

Union(x, y)

@
v
v
x
v
N

Running time:

u\/ |

v
N

N\

\
\

.
AN

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 9/24

Union(x, y)

Running time: O(|S|+|T|)

N\

\
\

.
AN

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 9/24

Union(x, y)

Running time: O(|S|+|T|)
! > |S| to walk down S to final
T. "y > element

> | T| to walk down T
resetting head pointers

N\

\
\

.
AN

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 9/24

Union(x, y)

Running time: O(|S|+|T|)
! > |S| to walk down S to final
T. "y > element

> | T| to walk down T
resetting head pointers

%?\ : | : : Since |S|,|T| could be ©(n),
\\\ can only say O(n) for Unions

>~
AN

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 9/24

Improved Union(x, y)

Observation: don't need to preserve ordering inside the Union!

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 10/ 24

Improved Union(x, y)

Observation: don't need to preserve ordering inside the Union!
» Splice T into S right after x

S: LJ > > X

I |

VNN

P

—
v

<
v

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 10/ 24

Improved Union(x, y)

Observation: don't need to preserve ordering inside the Union!
» Splice T into S right after x

S:

—
v

<
v

Running time:

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 10/ 24

Improved Union(x, y)

Observation: don't need to preserve ordering inside the Union!
» Splice T into S right after x

S:

—
v

<
v

Running time: O(|T|)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 10/ 24

Improved Union(x, y)

Observation: don't need to preserve ordering inside the Union!
» Splice T into S right after x

S:

—
v

<
v

Running time: O(|T|)
» Still can’t say anything better than O(n)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 10/ 24

Even more improved Union(x, y)
Observation: Why splice T into §7 Could also splice S into T.

> Time O(|S])

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 11/24

Even more improved Union(x, y)
Observation: Why splice T into §7 Could also splice S into T.

> Time O(|S])

Splice smaller into bigger!
> Store size of set in head node.
> Splice smaller into bigger: time O(min(|S|,|T]|))

> Still only O(n). But now can make stronger amortized guarantee!

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 11/24

Even more improved Union(x, y)
Observation: Why splice T into §7 Could also splice S into T.

> Time O(|S])

Splice smaller into bigger!
> Store size of set in head node.
> Splice smaller into bigger: time O(min(|S|,|T|))
> Still only O(n). But now can make stronger amortized guarantee!

Theorem
The amortized cost of Find and Union is O(1), and the amortized cost of Make-Set is

O(log n).

Corollary
The total running time is O(m + nlog n). J

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 11/24

Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element
> When an element is created (via Make-Set), add log n tokens to its bank
> Find does not affect banks

» When doing Union, take token from bank of each element in smaller set.

M e vt_Set C"\ . EYR
N\

gloc:)(\

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 12/24

Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element
> When an element is created (via Make-Set), add log n tokens to its bank
> Find does not affect banks
» When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 12/24

Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element
> When an element is created (via Make-Set), add log n tokens to its bank
> Find does not affect banks
» When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma J

No bank is ever negative.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 12/24

Amortized Analysis of List Algorithm
Banking/accounting argument: bank for every element
> When an element is created (via Make-Set), add log n tokens to its bank
> Find does not affect banks
» When doing Union, take token from bank of each element in smaller set.
Obvious: initially, total bank is 0 (no elements).

Lemma
No bank is ever negative. J

Proof.

Fix element e. Starts with log n tokens. When do we remove a token?

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 12/24

Amortized Analysis of List Algorithm
Banking/accounting argument: bank for every element
> When an element is created (via Make-Set), add log n tokens to its bank
> Find does not affect banks
» When doing Union, take token from bank of each element in smaller set.
Obvious: initially, total bank is 0 (no elements).

Lemma
No bank is ever negative. J

Proof.
Fix element e. Starts with log n tokens. When do we remove a token?

» When in smaller set of a Union.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 12/24

Amortized Analysis of List Algorithm
Banking/accounting argument: bank for every element
> When an element is created (via Make-Set), add log n tokens to its bank
> Find does not affect banks
» When doing Union, take token from bank of each element in smaller set.
Obvious: initially, total bank is 0 (no elements).

Lemma
No bank is ever negative. J

Proof.
Fix element e. Starts with log n tokens. When do we remove a token?
» When in smaller set of a Union.

> Size of set containing e at least doubles!

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 12/24

Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element
> When an element is created (via Make-Set), add log n tokens to its bank
> Find does not affect banks
» When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma
No bank is ever negative. J

Proof.
Fix element e. Starts with log n tokens. When do we remove a token?
» When in smaller set of a Union.

> Size of set containing e at least doubles!

» Can only happen at most log n times.]

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 12/24

Amortized Analysis of List Algorithm (cont'd)

Make-Set:
> True cost: O(1)
» Change in banks: logn

—= Amortized cost: O(1) + O(logn) = O(log n)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 13 /24

Amortized Analysis of List Algorithm (cont'd)
Make-Set:

> True cost: O(1)

» Change in banks: logn

—= Amortized cost: O(1) + O(logn) = O(log n)

Find:
> True cost: O(1)
» Change in banks: 0
— Amortized cost: O(1)+0=0(1)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 13 /24

Amortized Analysis of List Algorithm (cont'd)

Make-Set:
> True cost: O(1)
» Change in banks: logn

—= Amortized cost: O(1) + O(logn) = O(log n)

Find:
> True cost: O(1) O(“lo":)r\ T M)

» Change in banks: 0

W
— Amortized cost: O(1) +0= 0(1) O(m loi) '/\B
Union:
> True cost: min(|S|,|T|)
> Change in banks: —min(|S|,|T|)
— Amortized cost: min(|S|,|T|) - min(|S|,|T|) =0= O(1).

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 13 /24

Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.
» Slow part of Union: updating all head pointers in smaller list.
» Don't do it!

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 14 /24

Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

» Slow part of Union: updating all head pointers in smaller list.

» Don't do it!

> Results in trees rather than lists (can drop next pointer)

)

. B

Jessica Sorrell Lecture 10: Union-Find

r U\

September 25, 2025

14 /24

Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.
» Slow part of Union: updating all head pointers in smaller list.
» Don't do it!

> Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 14 /24

Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.
» Slow part of Union: updating all head pointers in smaller list.
» Don't do it!

> Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

> Use this time to “update head” pointers: on Find(x), change pointers of x and all
ancestors to point to root

» Path Compression b
O

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 14 /24

Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.
» Slow part of Union: updating all head pointers in smaller list.
» Don't do it!

> Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

> Use this time to “update head” pointers: on Find(x), change pointers of x and all
ancestors to point to root

» Path Compression

|ldea 2: Union By Rank
> Size of set was important for lists, less important for trees.

» Choose which set to splice into which by rank of trees (related to height)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 14 /24

Main Result

Theorem
When using Path Compression and Union By Rank, total time at most O(mlog™ n). J

log™: iterated log,.
> log™ n = # times apply log, until get to <1

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 15/24

Main Result

Theorem
When using Path Compression and Union By Rank, total time at most O(mlog™ n). J

log™: iterated log,.
> log™ n = # times apply log, until get to <1
> log*(29%%30) = 1 + log* (65536) = 2 + log*(16) = 3 + log*(4) = 4 +log*(2) =5

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 15/24

Main Result

Theorem

When using Path Compression and Union By Rank, total time at most O(mlog™ n). J

log™: iterated log,.
> log™ n = # times apply log, until get to <1

> log*(29%%30) = 1 + log* (65536) = 2 + log*(16) = 3 + log*(4) = 4 +log*(2) =5
> Basically log™ n always < 5.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 15/24

Main Result

Theorem
When using Path Compression and Union By Rank, total time at most O(mlog™ n). J

log™: iterated log,.
> log™ n = # times apply log, until get to <1
> log*(29%%30) = 1 + log* (65536) = 2 + log*(16) = 3 + log*(4) = 4 +log*(2) =5
> Basically log™ n always < 5.

Stronger theorem: total time at most O(m - a(m, n)).

» a(m, n): inverse Ackermann function. Grows even slower than log”*.
> See CLRS for details

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 15/24

Formal Procedures: Make-Set and Find

Make-Set(x): Set x - rank =0 and x — parent = x
» Running time: O(1).

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 16 /24

Formal Procedures: Make-Set and Find

Make-Set(x): Set x - rank =0 and x — parent = x
» Running time: O(1).

Find(x): Walk from x to root, and return root. Set parent pointers of x and all ancestors to
root.

» |f x »> parent = x then return x
> x — parent = Find (x — parent)

» Return x — parent

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 16 /24

Formal Procedures: Make-Set and Find

Make-Set(x): Set x - rank =0 and x — parent = x
» Running time: O(1).

Find(x): Walk from x to root, and return root. Set parent pointers of x and all ancestors to
root.

» |f x »> parent = x then return x
> x — parent = Find (x — parent)
» Return x — parent

Running time of Find: depth of x (distance to root)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 16 /24

Find example

V]

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 17 /24

Find example

Jessica Sorrell

Lecture 10: Union-Find

September 25, 2025

17 /24

Formal Procedure: Union

Link(ry,r2): Only applied to root nodes
» If B - rank > r, - rank, set r, - parent =
» If r, > rank > r - rank, set n — parent =

» If B - rank = r, — rank, set rp - parent = r; and increment r; - rank.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 18 /24

Formal Procedure: Union

Link(ry,r2): Only applied to root nodes

» If B - rank > r, - rank, set r, - parent =

» If r, > rank > r - rank, set n — parent =

» If B - rank = r, — rank, set rp - parent = r; and increment r; - rank.
Running time of Link: O(1)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 18 /24

Formal Procedure: Union

Link(ry,r2): Only applied to root nodes

» If B - rank > r, - rank, set r, - parent =

» If r, > rank > r - rank, set n — parent =

» If B - rank = r, — rank, set rp - parent = r; and increment r; - rank.
Running time of Link: O(1)

Union(x,y): Link(Find(x), Find(y))

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 18 /24

Formal Procedure: Union

Link(ry,r2): Only applied to root nodes

» If B - rank > r, - rank, set r, - parent =

» If r, > rank > r - rank, set n — parent =

» If B - rank = r, — rank, set rp - parent = r; and increment r; - rank.
Running time of Link: O(1)

Union(x,y): Link(Find(x), Find(y))
> Running time: depth(x) + depth(y)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 18 /24

Union example

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 19/24

Union example

/N \ If z— rank > w — rank

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 19/24

Union example

A

[\

f—
/ N

Jessica Sorrell

TN

y

Lecture 10: Union-Find

If z - rank > w — rank

September 25, 2025

19 /24

Union example

/R \ If z— rank > w — rank

If z - rank = w — rank,
[\ then (z — rank) + +

f—

y

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 19/24

Properties of Ranks

1. If x not a root, then (x —» rank) < (x - parent — rank)
2. When doing path compression, if parent of x changes, new parent has rank strictly larger

than old parent
3. x = rank can change only if x a root, and once x is a non-root it never becomes a root

again.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 20/24

Properties of Ranks

1. If x not a root, then (x —» rank) < (x - parent — rank)

2. When doing path compression, if parent of x changes, new parent has rank strictly larger
than old parent

3. x = rank can change only if x a root, and once x is a non-root it never becomes a root
again.

4. When x first reaches rank r, there are at least 2" nodes in tree rooted at x.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 20/24

Properties of Ranks

1. If x not a root, then (x —» rank) < (x - parent — rank)

2. When doing path compression, if parent of x changes, new parent has rank strictly larger
than old parent

3. x = rank can change only if x a root, and once x is a non-root it never becomes a root
again.

4. When x first reaches rank r, there are at least 2" nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: r = 0.

v

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 20/24

Properties of Ranks

1. If x not a root, then (x —» rank) < (x - parent — rank)

2. When doing path compression, if parent of x changes, new parent has rank strictly larger
than old parent

3. x = rank can change only if x a root, and once x is a non-root it never becomes a root
again.

4. When x first reaches rank r, there are at least 2" nodes in tree rooted at x.

Proof of Property 4.
Induction. Base case: r=0. v

v

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 20/24

Properties of Ranks

1. If x not a root, then (x —» rank) < (x - parent — rank)

2. When doing path compression, if parent of x changes, new parent has rank strictly larger
than old parent

3. x = rank can change only if x a root, and once x is a non-root it never becomes a root
again.

4. When x first reaches rank r, there are at least 2" nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: r=0. v
Inductive case: Suppose true for r-1.

v

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 20/24

Properties of Ranks

1. If x not a root, then (x —» rank) < (x - parent — rank)

2. When doing path compression, if parent of x changes, new parent has rank strictly larger
than old parent

3. x = rank can change only if x a root, and once x is a non-root it never becomes a root
again.

4. When x first reaches rank r, there are at least 2" nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: r=0. v

Inductive case: Suppose true for r-1.
When x first gets rank r, must be because x had rank r -1 (and was root), unioned with

another set with root z of rank r-1.

v

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 20/24

Properties of Ranks

1. If x not a root, then (x —» rank) < (x - parent — rank)

2. When doing path compression, if parent of x changes, new parent has rank strictly larger
than old parent

3. x = rank can change only if x a root, and once x is a non-root it never becomes a root
again.

4. When x first reaches rank r, there are at least 2" nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: r=0. v

Inductive case: Suppose true for r-1.

When x first gets rank r, must be because x had rank r -1 (and was root), unioned with
another set with root z of rank r - 1.

— By induction, at least 2! nodes in each tree

v

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 20/24

Properties of Ranks

1. If x not a root, then (x —» rank) < (x - parent — rank)

2. When doing path compression, if parent of x changes, new parent has rank strictly larger
than old parent

3. x = rank can change only if x a root, and once x is a non-root it never becomes a root
again.

4. When x first reaches rank r, there are at least 2" nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: r=0. v

Inductive case: Suppose true for r-1.

When x first gets rank r, must be because x had rank r -1 (and was root), unioned with
another set with root z of rank r - 1.

— By induction, at least 2! nodes in each tree

— At least 271 + 271 = 2" nodes in combined tree. (1)

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 20/24

Nodes of rank r

Lemma J

There are at most n[2" nodes of rank at least r.

Proof.

Let x node of rank at least r. Let Sy be descendants of x when it first got rank r.
= |Sx| > 2" by property 4.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 21 /24

Nodes of rank r

Lemma
There are at most n[2" nodes of rank at least r.

Proof.

Let x node of rank at least r. Let Sy be descendants of x when it first got rank r.
= |Sx| > 2" by property 4.

Let z some other node of rank > r. Without loss of generality, suppose x got rank r before z.
Consider some e € Sy. Then e can't be in S, (already in tree with rank > r). So §4n S, = @.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 21 /24

Nodes of rank r

Lemma

There are at most n[2" nodes of rank at least r.

Proof.

Let x node of rank at least r. Let Sy be descendants of x when it first got rank r.
= |Sx| > 2" by property 4.

Let z some other node of rank > r. Without loss of generality, suppose x got rank r before z.
Consider some e € Sy. Then e can't be in S, (already in tree with rank > r). So §4n S, = @.

= At most n/2" nodes of rank > r. []

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 21 /24

Main Result |

Theorem
When using Path Compression and Union By Rank, total time at most O(mlog™ n). J

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 22 /24

Main Result |

Theorem
When using Path Compression and Union By Rank, total time at most O(mlog™ n). J

m operations total. Analyze each type separately:
> Make-Set: O(1) time each
> Union: two Find operations, plus O(1) other work.

» Find(x): proportional to depth of x. Count number of parent pointers followed, call this
the time.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 22 /24

Main Result |

Theorem
When using Path Compression and Union By Rank, total time at most O(mlog™ n). J

m operations total. Analyze each type separately:
> Make-Set: O(1) time each
> Union: two Find operations, plus O(1) other work.

» Find(x): proportional to depth of x. Count number of parent pointers followed, call this
the time.

So at most 2m Finds, want to bound total # parent pointers followed.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 22 /24

Main Result |

Theorem
When using Path Compression and Union By Rank, total time at most O(mlog™ n). J

m operations total. Analyze each type separately:
> Make-Set: O(1) time each
> Union: two Find operations, plus O(1) other work.

» Find(x): proportional to depth of x. Count number of parent pointers followed, call this
the time.

So at most 2m Finds, want to bound total # parent pointers followed.

> At most one parent pointer to root per Find == at most O(m) parent pointers to
roots.

» So only need to worry about parent pointers to non-roots.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 22 /24

Main Result |lI: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: 2 1 1 denote a tower of i 2's

2
»241=2 292=22-4 213=22_-24-16214=22 -216_65536
> log*(21i) =i

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 23 /24

Main Result |lI: Buckets

Put elements in buckets according to rank (only in analysis).
Notation: 2 1 1 denote a tower of i 2's

2
»241=2 292=22-4 213=22_-24-16214=22 -216_65536
> log*(21i) =i

B(i) (Bucket i): All elements of rank at least 21 (1 —1), at most (2 1) -1
> Bucket 0: nodes with rank 0
» Bucket 1: rank at least 1, at most 1
» Bucket 2: rank at least 2, at most 3
> Bucket 3: rank at least 4, at most 15
> Bucket 4: rank at least 16, at most 65535

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 23 /24

Main Result |lI: Buckets

Put elements in buckets according to rank (only in analysis).
Notation: 2 1 1 denote a tower of i 2's

2
»241=2 292=22-4 213=22_-24-16214=22 -216_65536
> log*(21i) =i

B(i) (Bucket i): All elements of rank at least 21 (1 —1), at most (2 1) -1
> Bucket 0: nodes with rank 0
» Bucket 1: rank at least 1, at most 1
» Bucket 2: rank at least 2, at most 3
> Bucket 3: rank at least 4, at most 15
> Bucket 4: rank at least 16, at most 65535

> At most log™ n buckets.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 23 /24

Main Result Il: Buckets
Put elements in buckets according to rank (only in analysis).
Notation: 2 1 1 denote a tower of i 2's

2
»241=2 292=22-4 213=22_-24-16214=22 -216_65536
> log*(21i) =i

B(i) (Bucket i): All elements of rank at least 21 (1 —1), at most (2 1) -1
> Bucket 0: nodes with rank 0
» Bucket 1: rank at least 1, at most 1
» Bucket 2: rank at least 2, at most 3
> Bucket 3: rank at least 4, at most 15
> Bucket 4: rank at least 16, at most 65535
> At most log™ n buckets.
From Lemma: at most n/(2%'0~1)) = n/(2 1 i) elements in bucket i.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 23 /24

Main Result |l

Want to bound total # parent pointers (to non-roots) followed over all < 2m Finds.

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 24 /24

Main Result |l

Want to bound total # parent pointers (to non-roots) followed over all < 2m Finds.

Type 1: Parent pointers that cross buckets
> <log* n buckets = < log” n per Find = <2mlog* n = O(mlog” n) total

Jessica Sorrell Lecture 10: Union-Find September 25, 2025 24 /24

Main Result |l

Want to bound total # parent pointers (to non-roots) followed over all < 2m Finds.
Type 1: Parent pointers that cross buckets

> <log”® n buckets = <log™ n per Find = <2mlog® n = O(mlog™ n) total
Type 2: Parent pointers that do not cross buckets

> For each x, let a(x) = # times follow parent point from x to parent in same bucket, not
root. Want to show Y, a(x) < O(mlog™ n).

» Since x not root when following pointers, always has same rank

Jessica Sorrell Lecture 10: Union-Find

September 25, 2025 24 /24

Main Result |l

Want to bound total # parent pointers (to non-roots) followed over all < 2m Finds.
Type 1: Parent pointers that cross buckets
> <log”® n buckets = <log™ n per Find = <2mlog® n = O(mlog™ n) total
Type 2: Parent pointers that do not cross buckets
> For each x, let a(x) = # times follow parent point from x to parent in same bucket, not
root. Want to show Y, a(x) < O(mlog™ n).
» Since x not root when following pointers, always has same rank

» Whenever x's pointer followed, gets new parent (path compression)

== rank of parent goes up by at least 1 (properties of rank)
== happens at most 2 1 1 times if x in bucket i
= a(x)<211.

Jessica Sorrell Lecture 10: Union-Find

September 25, 2025 24 /24

Main Result |l

Want to bound total # parent pointers (to non-roots) followed over all < 2m Finds.
Type 1: Parent pointers that cross buckets
> <log”® n buckets = <log™ n per Find = <2mlog® n = O(mlog™ n) total
Type 2: Parent pointers that do not cross buckets
> For each x, let a(x) = # times follow parent point from x to parent in same bucket, not
root. Want to show Y, a(x) < O(mlog™ n).
» Since x not root when following pointers, always has same rank

» Whenever x's pointer followed, gets new parent (path compression)

== rank of parent goes up by at least 1 (properties of rank)
== happens at most 2 1 1 times if x in bucket i
= a(x)<211.

O(log* n) O(log* n) O(log* n) n
Ya(x)= > Y a(x)<) Y (2ti)< Y ——(21i)=0(nlog"n)
x i=0 xeB(i) i=0 xeB(i) 0 21i
< O(mlog™ n)

Jessica Sorrell Lecture 10: Union-Find

September 25, 2025 24 /24

