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Introduction

Another approach to dictionaries (insert, lookup, delete): hashing

» Can improve operations to O(1), but with many caveats!

Should have seen some discussion of hashing in data structures. Also in CLRS.

» Separate chaining vs. open addressing

Today: discussion of caveats, more advanced versions of hashing (universal and perfect)
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Hashing Basics

» Keys from universe U (think very large)
» Set S ¢ U of keys we actually care about (think relatively small). |S| = N.
Hash table A (array) of size M.
» Hash function h: U - [M]
> [M]={1,2,...,M)
> Idea: store x in A[h(x)]

v
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Hashing Basics

» Keys from universe U (think very large)
» Set S ¢ U of keys we actually care about (think relatively small). |S| = N.

» Hash table A (array) of size M.
» Hash function h: U - [M]

> [M]={1,2,...,M)
> ldea: store x in A[h(x)]

One more component: collision resolution

» Today: separate chaining

~

> A[i] is a linked list containing all x
inserted where h(x) =i.

Nz (0
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Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)
Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.
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Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)
Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?
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Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)
Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:
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Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)
Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:
» Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
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Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)
Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:
» Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
> Small M. ldeally, M = O(N).
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Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)
Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:
» Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
> Small M. ldeally, M = O(N).

» h fast to compute.
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Bad News

Theorem

For any hash function h, if {U| > (N -1)M + 1, then there exists a set S of N elements that
all hash to the same location.
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Bad News

Theorem

For any hash function h, if {U| > (N -1)M + 1, then there exists a set S of N elements that
all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive. DJ

T

M
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Bad News

Theorem

For any hash function h, if {U| > (N -1)M + 1, then there exists a set S of N elements that
all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive. IZIJ

So worst case behavior always bad! How can we get around this?
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Bad News

Theorem

For any hash function h, if {U| > (N -1)M + 1, then there exists a set S of N elements that

all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

3

So worst case behavior always bad! How can we get around this?

» Option 1: don't worry about it, hope world isn't adversarial.
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Bad News

Theorem

For any hash function h, if {U| > (N -1)M + 1, then there exists a set S of N elements that
all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive. EIJ

So worst case behavior always bad! How can we get around this?

» Option 1: don't worry about it, hope world isn't adversarial.
» Option 2: Randomness! Random function h: U - [M]

> For each x € U, choose y € [M] uniformly at random and set h(x) = y.
» Hopefully good behavior in expectation.
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Bad News

Theorem

For any hash function h, if {U| > (N -1)M + 1, then there exists a set S of N elements that
all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive. ]

So worst case behavior always bad! How can we get around this?

» Option 1: don't worry about it, hope world isn't adversarial.
» Option 2: Randomness! Random function h: U - [M]

> For each x € U, choose y € [M] uniformly at random and set h(x) = y.
» Hopefully good behavior in expectation.

> Problem: How can we store/remember/create h?
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Universal Hashing

Definition
A probability distribution H over hash functions {h: U — [M]} is universal if

Pr [h(x) = h(y)] < 1/M

for all x,y € U with x £ y.
=
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Universal Hashing
Definition
A probability distribution H over hash functions {h: U — [M]} is universal if

Pr [h(x) = h(y)] < 1/M

for all x,y € U with x # y.

Clearly satisfied by H = uniform distribution over all hash functions
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Universal Hashing

Definition
A probability distribution H over hash functions {h: U — [M]} is universal if

Pr [h(x) = h(y)] < 1/M

for all x,y € U with x # y.

Clearly satisfied by H = uniform distribution over all hash functions

Theorem

If H is universal, then for every set S € U with |S| = N and for every x € U, the expected
number of collisions (when we draw h from H) between x and elements of S is at most N/M.
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Universal Hashing

Definition
A probability distribution H over hash functions {h: U — [M]} is universal if

Pr [h(x) = h(y)] < 1/M

for all x,y € U with x # y.

Clearly satisfied by H = uniform distribution over all hash functions

Theorem

If H is universal, then for every set S € U with |S| = N and for every x € U, the expected
number of collisions (when we draw h from H) between x and elements of S is at most N/M.

So Lookup(x) and Delete(x) have expected time O(N/M).
= If M =Q(N), operations in O(1) timel!
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Main Proof

Theorem

If H is universal, then for every set S € U with |S| = N and for every x € U, the expected
number of collisions (when we draw h from H) between x and elements of S is at most N/M.

Proof.
1 if h(x)=h(y)

0 otherwise

Let Cyy = {

—> E[Cy]= Pr[h(x) = h(y)] < 1/M
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Main Proof

Theorem

If H is universal, then for every set S € U with |S| = N and for every x € U, the expected
number of collisions (when we draw h from H) between x and elements of S is at most N|M.

Proof.
1 if h(x)=h(y)

Let Cyy =
Y {0 otherwise

—> E[Cy]= Pr[h(x) = h(y)] < 1/M

Number of collisions between x and S is exactly ¥, s Cxy

1
yeS yeS yeS M
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Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which
there are at most O(M) elements in the system at any time, the expected total cost of the
whole sequence is only O(L) (assuming h takes constant time to compute).
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Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which
there are at most O(M) elements in the system at any time, the expected total cost of the
whole sequence is only O(L) (assuming h takes constant time to compute).

Proof.

By theorem, each operation O(1) in expectation. Total time is sum: linearity of
expectations. []
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Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which
there are at most O(M) elements in the system at any time, the expected total cost of the
whole sequence is only O(L) (assuming h takes constant time to compute).

Proof.

By theorem, each operation O(1) in expectation. Total time is sum: linearity of
expectations. []

So universal distributions are great. Can we construct them?
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Universal Hash Families

Definition
If H is universal and is a uniform distribution over a set of functions {hy, hy,...}, then that
set is called a universal hash family.

Often use H to refer to both set of functions and uniform distribution over it.
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Universal Hash Families

Definition
If H is universal and is a uniform distribution over a set of functions {hy, hy,...}, then that
set is called a universal hash family.

Often use H to refer to both set of functions and uniform distribution over it.

Notation:
» U={0,1}" (so |U| =2")
» M =2% 50 anindex to A is an element of {0,1}"
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Universal Hash Families

Definition
If H is universal and is a uniform distribution over a set of functions {hy, hy,...}, then that
set is called a universal hash family.

Often use H to refer to both set of functions and uniform distribution over it.

Notation:
> U={0,1}" (so |U| = 2") h x  hx)
» M =2% 50 anindex to A is an element of {0,1}" 100011 1
_ _ _ _ _ O111(0|=|1
Construction: H = {0,1}?*¥ i.e., H is all bx u binary matrices 1110l 0
» Each h e H is a (linear) function from U to [M]:
h(x) = hx € {0,1}" (all operations mod 2) 0
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Universality

Theorem
H is a universal hash family: Prp.y[h(x) = h(y)] <1/M for all x + y € {0,1}". J
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Universality

Theorem

H is a universal hash family: Prp.y[h(x) = h(y)] <1/M for all x + y € {0,1}". J
Proof.
Matrix multiplication: h(x) = hx = ¥;.,._4 h' (where h' is i'th column of h).
()
E E
P

X
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Universality

Theorem

H is a universal hash family: Prp.y[h(x) = h(y)] <1/M for all x + y € {0,1}".

Proof.

Matrix multiplication: h(x) = hx = ¥;.,._4 h' (where h' is i'th column of h).

Since x # y, there is i s.t. x; #+ y;. WLOG, x; =0 and y; = 1.
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Universality

Theorem
H is a universal hash family: Prp.y[h(x) = h(y)] <1/M for all x + y € {0,1}".

Proof.
Matrix multiplication: h(x) = hx = ¥;.,._4 h' (where h' is i'th column of h).
Since x # y, there is i s.t. x; #+ y;. WLOG, x; =0 and y; = 1.

Draw all entries of h except for h'. Let h’ = h with h' all 0's
> h(x) = h'(x) already fixed.

Jessica Sorrell Lecture 11: Universal and Perfect Hashing September 30, 2025 10/16



Universality

Theorem
H is a universal hash family: Prp.y[h(x) = h(y)] <1/M for all x + y € {0,1}".

Proof.
Matrix multiplication: h(x) = hx = ¥;.,._4 h' (where h' is i'th column of h).
Since x # y, there is i s.t. x; #+ y;. WLOG, x; =0 and y; = 1.

Draw all entries of h except for h'. Let h’ = h with h' all 0's
> h(x) = h'(x) already fixed.
> If h(y) = h(x), then h' must equal h(x) - h’(y) .
(h(y) =h(x) = Tjy W =S s W= h =% W -5, 1 b’ = h(x)-H(y))
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Universality

Theorem
H is a universal hash family: Prp.y[h(x) = h(y)] <1/M for all x + y € {0,1}".

Proof.
Matrix multiplication: h(x) = hx = ¥;.,._4 h' (where h' is i'th column of h).
Since x # y, there is i s.t. x; #+ y;. WLOG, x; =0 and y; = 1.

Draw all entries of h except for h'. Let h’ = h with h' all 0's
> h(x) = h'(x) already fixed.
> If h(y) = h(x), then h' must equal h(x) - h’(y) .
(h(y) =h(x) = Tjy W =S s W= h =% W -5, 1 b’ = h(x)-H(y))
> b rows in h, so happens with probability exactly 1/2° =1/M ]
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Perfect Hashing

Suppose you know S, never changes.
» Build table, then do lookups. Like a real dictionary!

» Care more about time to do lookup than time to build dictionary
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Perfect Hashing

Suppose you know S, never changes.
» Build table, then do lookups. Like a real dictionary!

» Care more about time to do lookup than time to build dictionary

Obvious approaches:
> Sorted array: lookups O(log )
> Balanced search tree: O(log N)
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Perfect Hashing

Suppose you know S, never changes.
» Build table, then do lookups. Like a real dictionary!

» Care more about time to do lookup than time to build dictionary

Obvious approaches:
> Sorted array: lookups O(log )
> Balanced search tree: O(log N)

Can we do better with hashing?
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Perfect Hashing

Suppose you know S, never changes.
» Build table, then do lookups. Like a real dictionary!

» Care more about time to do lookup than time to build dictionary

Obvious approaches:
> Sorted array: lookups O(log )
> Balanced search tree: O(log N)

Can we do better with hashing? Yes, through universal hashing!
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Method 1
Use table of size M = N2.
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Method 1
Use table of size M = N2.

Theorem
Let H be universal with M = N?. Then Prp,.[no collisions in §]>1/2. J

Proof.
Fix x,y € S with x # y.

Jessica Sorrell Lecture 11: Universal and Perfect Hashing September 30, 2025 12/16



Method 1
Use table of size M = N2.

Theorem
Let H be universal with M = N?. Then Prp,.[no collisions in §]>1/2. J

Proof.

Fix x,y € S with x # y.
Pr.u[h(x) = h(y)] < 1/M = 1/N? by universality.
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Method 1
Use table of size M = N2.

Theorem
Let H be universal with M = N?. Then Prp,.[no collisions in §]>1/2.

Proof.

Fix x,y € S with x # y.
Pr.u[h(x) = h(y)] < 1/M = 1/N? by universality.

1
Pr [3 collision i < Pr [h(x)=h < —
hNL[ collision in S] < x%g””’"’[ (x) =h(y)] < R
X+y X+y
Nyl NN-1)1 1
(-2 D
2/ N2 2 N2~ 2
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Method 1
Use table of size M = N2.

Theorem
Let H be universal with M = N?. Then Prp,.[no collisions in §]>1/2.

Proof.

Fix x,y € S with x # y.
Pr.u[h(x) = h(y)] < 1/M = 1/N? by universality.

. 1

hFN’L[EI collision in §] < xés hlz;‘_l[h(x) =h(y)] < 2 IYE
XEy X%y
_(N)l _N(N-1) 1 1
\2/n2 2 N2 2

So keep sampling h ~ H until get one with no collisions!
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Method 2

M = N? is pretty big!
» Only storing N things, and know them ahead of time
> Want space O(N)

» Open question for a long time!
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Method 2

M = N? is pretty big!
» Only storing N things, and know them ahead of time
> Want space O(N)

» Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw h~ H.

> Will have collisions. Need to do something other than chaining.
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Method 2

M = N? is pretty big!
» Only storing N things, and know them ahead of time
> Want space O(N)

» Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw h~ H.

> Will have collisions. Need to do something other than chaining.
For each i e [M], let S; = {x € S: h(x) =i} and let n; = |S;|
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Method 2

M = N? is pretty big!
» Only storing N things, and know them ahead of time
> Want space O(N)

» Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw h~ H.
> Will have collisions. Need to do something other than chaining.
For each i e [M], let S; = {x € S: h(x) =i} and let n; = |S;|
» Use another hash table for S;!
> Use Method 1: O(nl.z)-size perfect hashing of S;.
> Let h; : U — [n?] be hash function for S;, and A; be table (pointer from A[i])
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Method 2

M = N? is pretty big!
» Only storing N things, and know them ahead of time
> Want space O(N)

» Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw h~ H.
> Will have collisions. Need to do something other than chaining.
For each i e [M], let S; = {x € S: h(x) =i} and let n; = |S;|
» Use another hash table for S;!
> Use Method 1: O(nl.z)-size perfect hashing of S;.
> Let h; : U — [n?] be hash function for S;, and A; be table (pointer from A[i])

Lookup(x): Look in Ap(xy[hp(x)(x)]
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Analysis
Lookup time: by analysis of Method 1, no collisions in second level.
— Lookup time O(1)
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Analysis
Lookup time: by analysis of Method 1, no collisions in second level.
— Lookup time O(1)

Size: O(N + Z'.'\il nlz)
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Analysis
Lookup time: by analysis of Method 1, no collisions in second level.

— Lookup time O(1)

Size: O(N + Z'.'\il nlz)

Theorem
Let H be universal onto a table of size N. Then

h~H

Pr [Zn >4N] <1/2.

So like with method 1: keep drawing h ~ H until Z’.’\il ":‘2 <4N
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Analysis

Lookup time: by analysis of Method 1, no collisions in second level.

— Lookup time O(1)

Size: O(N + Z'.'\il nlz)

Theorem

Let H be universal onto a table of size N. Then

P 4N | < 1/2.
P L[Zn > ]< /
So like with method 1: keep drawing h ~ H until Z’.’\il ":‘2 <4N

Prove that E[XY, n?] <2N.
» Implies theorem by Markov's inequality

> Pr[X >2E[X]] <1/2 for nonnegative random variables X.
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Proof

Observation: Zi'\il n'.2 is exactly number of ordered pairs that collide, including self-collisions

» Example: If S; ={a, b, c} then ":’2 = 9. Ordered colliding pairs:
(a,a), (a,b),(a,c), (b, a), (b,b),(b,c),(c,a),(c,b),(c,c)
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Proof

Observation: Zi'\il n'.2 is exactly number of ordered pairs that collide, including self-collisions

» Example: If S; ={a, b, c} then ":’2 = 9. Ordered colliding pairs:
(a,a), (a,b),(a,c), (b, a), (b,b),(b,c),(c,a),(c,b),(c,c)

et Gy = {1 if h(x) = h(y)

0 otherwise
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Proof

Observation: Zi'\il n'.2 is exactly number of ordered pairs that collide, including self-collisions

» Example: If S; ={a, b, c} then ":‘2 = 9. Ordered colliding pairs:
(a,a), (a,b),(a,c), (b, a), (b,b),(b,c),(c,a),(c,b),(c,c)

et Gy = {1 if h(x) = h(y)

0 otherwise

e[5n]-e[n 5 cxy]

i=1 xeS yeS
=N+) Y E[Cy] (linearity of expectations)
xeS yeS:y+x
N(N -1) _ .
<N+ (definition of universal)

<2N (since M = N)
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