Lecture 12: Dynamic Programming |

Michael Dinitz

October 2, 2025
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 1/20

Introduction

Dynamic Programming: divide and conquer++

Classical divide and conquer (quicksort, mergesort, ...)
» Divide problem into subproblems
» Solve each subproblem
» Combine solutions from subproblems into solution for problem

> Usually implemented with recursion

Issues that dynamic programming can help with:
> What if subproblems overlap?

» What if recursion too slow?

Today: motivate dynamic programming through simple example

Thursday: more complicated examples
Twesde Y

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 2/20

Notes

Dynamic programming used all over the place
> Originally in control theory
» Then many uses in graph algorithms, combinatorial optimization

> Currently: many uses in strings

At JHU:

> String algorithms: NLP!
» Jason Eisner: new programming language Dyna to automatically do dynamic programming

> String algorithms: computational biology!

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 3/20

Why “Dynamic Programming”: Richard Bellman

An interesting question is, Where did the name, dynamic programming, come from? The 1950s were
not good years for mathematical research. We had a very interesting gentleman in Washington named
Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word
research. I'm not using the term lightly; I'm using it precisely. His face would suffuse, he would
turn red, and he would get violent if people used the term research in his presence. You can imagine
how he felt, then, about the term mathematical. The RAND Corporation was employed by the Air
Force, and the Air Force had Wilson as its boss, essentially. Hence, | felt | had to do something to
shield Wilson and the Air Force from the fact that | was really doing mathematics inside the RAND
Corporation. What title, what name, could | choose? In the first place | was interested in planning,
in decision making, in thinking. But planning, is not a good word for various reasons. | decided
therefore to use the word “programming”. | wanted to get across the idea that this was dynamic,
this was multistage, this was time-varying. | thought, let’s kill two birds with one stone. Let’s take a
word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also
has a very interesting property as an adjective, and that it’s impossible to use the word dynamic in
a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning.
It’s impossible. Thus, | thought dynamic programming was a good name. It was something not even
a Congressman could object to. So | used it as an umbrella for my activities.

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 4 /20

Example: Weighted Interval Scheduling

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 5/20

Weighted Interval Scheduling: Definition
Input:

> n requests (intervals) {1,2,...,n}

> For each request 1:
> Start time s;
> Finish time £
> Value v;
» Assume sorted by finish time: :
h<h<-<h :

Feasible:

> S ¢ [n] feasible if no two intervals of S ;
overlap g
> (si,f;i)n(sj,f;) = forall i,jeS with

I #J

time

Goal:
> Find feasible S maximizing v(S) = Y ;s Vi

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 6 /20

Definition |
Definition
Let p(i) largest j < i such that f; <'s;. If no such j exists, p(i) = 0.

1 p(1)=0
2 ' p(2)=0
3 P(3) =0
4 p(4) =1
5 p(5) =0
6 p(6) =2
V4 p(7) =3
8 p(8) =5
B time
0 1 2 3 4 5 6 7 8 9 10 11

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 7/20

Obvious Approach

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 8/20

Obvious Approach

No variation of greedy works.
Example: greedy by earliest finishing times

weight = 999 —— b
weight=1 ——> a
: h
» time
0 1 2 3 4 5 6 7 8 9 10 11

Need fundamentally different approach

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 8/20

Simple Observation

Let S* € [n] be optimal solution

(unknown).
What simple observation can we make
about §*7
1 p(1)=0
2 p(2) =0
3 p(3)=0
4 p(4) = 1
5 p(5) =0
6 p(6) =2
7 p(7)=3
8 p(e) =5
< time
0 1 2 3 4 5 6 7 8 9 10 11
9/20

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025

Simple Observation

Let S* € [n] be optimal solution

(unknown).
What simple observation can we make
about §*7?
. 1 p(1)=0
Fact: Either ne S* or n¢ §*
2 p(2) =0
3 p(3)=0
4 p(4) = 1
5 p(5) =0
6 p(6) =2
7 p(7)=3
8 p(e) =5
< time
0 1 2 3 4 5 6 7 8 9 10 11
October 2, 2025 9/20

Michael Dinitz Lecture 12: Dynamic Programming |

Simple Observation

Let S* € [n] be optimal solution

(unknown).
What simple observation can we make
about §*7
. 1 p(1)=0
Fact: Either ne S* or n¢ §*
2 p(2) =0
* 3 p(3)=0
If n¢ S*:
4 p(4) =1
5 p(5) =0
6 p(6) =2
7 p(7)=3
j e
0 1 2 3 4 5 6 7 8 g 10 11

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 9/20

Simple Observation

Let S* € [n] be optimal solution

(unknown).
What simple observation can we make
about §*7
. 1 p(1) =0
Fact: Either ne S* or n¢ §*
2 p(2) =0
. . 3 P@3) =0
If n¢ S*: S* optimal solution for
4 p(4) = 1
{1,2’...,n—1}
5 p(5) =0
6 p(6) =2
7 p(7)=3
8 p(e) =5 _
R 2 3 4 5 6 7 8 9 10 11 rme

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 9/20

Simple Observation

Let S* € [n] be optimal solution

(unknown).
What simple observation can we make
about §*7
. 1 p(1) =0
Fact: Either ne S* or n¢ §*
2 p(2) =0
. . 3 P@3) =0
If n¢ S*: S* optimal solution for
4 p(4) = 1
{1,2’...,n—1}
5 p(5) =0
6 p(6) =2
If ne S*:
7 p(7)=3
8 p(e) =5 _
R 2 3 4 5 6 7 8 9 10 11 rme

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 9/20

Simple Observation

Let S* € [n] be optimal solution

(unknown).
What simple observation can we make
about §*7

1 p(1)=0
Fact: Either ne S* or n¢ §*

2 p(2) =0
If n¢ S*: S* optimal solution for i o
{1,2,...,n-1} e
5 p(5) =0
If ne §*: ? o
7 p(7)=3
> Nothing in (p(n),n-1] in S*: - o
overlap with n o 1 2 3 4 5 6 7 8 9 10 I rme

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 9/20

Simple Observation

Let S* € [n] be optimal solution

(unknown).
What simple observation can we make
about §*7

1 p(1) =0
Fact: Either ne S* or n¢ §*

2 p(2) =0
If n¢ S*: S* optimal solution for i o
{1,2,...,n-1} S
5 p(5) =0
If ne S*: 8 e — — il
. . . §Nﬂ):3 -
> Nothing in (p(n),n-1] in §*: - —
—
overlap with n o 1 2 3 4 5 6 7 8 9 10 I rme

» §*={n}u
opt solution for {1,2,...,p(n)}

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 9/20

Formalize

Definition
Let OPT (i) denote value of optimal solution S for {1,2,...,i} J

Note:
> S not necessarily equal to $* n{1,2,...,i} (but S; =S")
» OPT(0) =0 by convention

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 10/20

Formalize

Definition
Let OPT (i) denote value of optimal solution S for {1,2,...,i} J

Note:
> S not necessarily equal to $* n{1,2,...,i} (but S; =S")
» OPT(0) =0 by convention

If n¢ S*: OPT(n) =

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 10/20

Formalize

Definition
Let OPT (i) denote value of optimal solution S for {1,2,...,i} J

Note:
> S not necessarily equal to $* n{1,2,...,i} (but S; =S")
» OPT(0) =0 by convention

lf n¢ S*: OPT(n)= OPT(n-1)

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 10/20

Formalize

Definition
Let OPT (i) denote value of optimal solution S for {1,2,...,i} J

Note:
> S not necessarily equal to $* n{1,2,...,i} (but S; =S")
» OPT(0) =0 by convention

lf n¢ S*: OPT(n)= OPT(n-1)
If ne §*: OPT(n) =

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 10/20

Formalize

Definition
Let OPT (i) denote value of optimal solution S for {1,2,...,i} J

Note:
> S not necessarily equal to $* n{1,2,...,i} (but S; =S")
» OPT(0) =0 by convention

lf n¢ S*: OPT(n)= OPT(n-1)
If ne §*: OPT(n)=v,+ OPT(p(n))

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 10/20

Formalize

Definition
Let OPT (i) denote value of optimal solution S for {1,2,...,i}

Note:
> S not necessarily equal to $* n{1,2,...,i} (but S; =S")
» OPT(0) =0 by convention

lf n¢ S*: OPT(n)= OPT(n-1)
If ne §*: OPT(n)=v,+ OPT(p(n))

Don’t know if n € §*, but can still say:

OPT (n) =

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 10/20

Formalize

Definition
Let OPT (i) denote value of optimal solution S for {1,2,...,i}

Note:
> S not necessarily equal to $* n{1,2,...,i} (but S; =S")
» OPT(0) =0 by convention

lf n¢ S*: OPT(n)= OPT(n-1)
If ne §*: OPT(n)=v,+ OPT(p(n))

Don’t know if n € §*, but can still say:

OPT (n) = max(OPT (n-1),v,+ OPT(p(n)))

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 10/20

Formalize

Definition
Let OPT (i) denote value of optimal solution S for {1,2,...,i}

Note:
> S not necessarily equal to $* n{1,2,...,i} (but S; =S")
» OPT(0) =0 by convention

lf n¢ S*: OPT(n)= OPT(n-1)
If ne §*: OPT(n)=v,+ OPT(p(n))

Don’t know if n € §*, but can still say:
OPT(n) = max(OPT(n-1),v,+ OPT(p(n)))

Now need to prove this more formally. ..

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 10/20

Structure Theorem

Theorem
OPT (j) = max(OPT (j-1),vj+ OPT(p(j))) forall1<j<n J

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 11/20

Structure Theorem

Theorem
OPT (j) =max(OPT(j-1),v; + OPT(p(j))) forall1<j<n

. Know there are feasible solutions to {1,2,...,j} of value:
> OPT([1) (, feasible for {1,2,...,j})

> v+ OPT(p(j)) (add J to S*m)
== OPT(_[) >max(OPT(j-1),vi+ OPT(p(j)))

Michael Dinitz Lecture 12: Dynamic Programming |

October 2, 2025

11/20

Structure Theorem

Theorem
OPT (j) =max(OPT(j-1),v; + OPT(p(j))) forall1<j<n

. Know there are feasible solutions to {1,2,...,j} of value:
> OPT([1) (, feasible for {1,2,...,j})

> v+ OPT(p(j)) (add J to S*m)
== OPT(_[) >max(OPT(j-1),vi+ OPT(p(j)))

<: Two cases

Michael Dinitz Lecture 12: Dynamic Programming |

October 2, 2025

11/20

Structure Theorem

Theorem
OPT (j) =max(OPT(j-1),v; + OPT(p(j))) forall1<j<n

. Know there are feasible solutions to {1,2,...,j} of value:
> OPT([1) (, feasible for {1,2,...,j})

> v+ OPT(p(j)) (add J to S*m)
== OPT(_[) >max(OPT(j-1),vi+ OPT(p(j)))

<: Two cases
> Ifj¢5;, then SJ?E c{1,2,...,j-1}
—> 5 feasible for [/ -1] = OPT(j) < OPT(j - 1) (definition of OPT(j - 1))

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 11/20

Structure Theorem

Theorem
OPT (j) =max(OPT(j-1),v; + OPT(p(j))) forall1<j<n

. Know there are feasible solutions to {1,2,...,j} of value:
> OPT([1) (, feasible for {1,2,...,j})

> v+ OPT(p(j)) (add J to S*(J))
== OPT(_[) >max(OPT(j-1),vi+ OPT(p(j)))

<: Two cases
> Ifj¢5;, then SJ?E c{1,2,...,j-1}
—> 5 feasible for [/ -1] = OPT(j) < OPT(j - 1) (definition of OPT(j - 1))
> If je ij‘, then by definition Sf \ {j} feasible for {1,2,...,p(j)}
— OPT(j)-vj= v(SJ.* {j}) <OPT(p(j)) (def of OPT (p(j)))
— OPT(j) < OPT(p(j)) +v;.

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025

11/20

Obvious Algorithm

Previous theorem a recurrence relation!

> Suggests obvious recursive algorithm for computing OPT (j)

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 12/20

Obvious Algorithm

Previous theorem a recurrence relation!

> Suggests obvious recursive algorithm for computing OPT (j)

Schedule(j) {
If j =0 return 0;
else return max(Schedule(j - 1), vj + Schedule(p(j));

}

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 12/20

Correctness

Theorem
Schedule(j) returns OPT (j). J

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 13/20

Correctness

Theorem
Schedule(j) returns OPT (j).

Proof.

Induction on j

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 13/20

Correctness

Theorem
Schedule(j) returns OPT (j).

Proof.

Induction on j

> Base case: j = 0. Then Schedule(j) returns 0 = OPT (§)

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 13/20

Correctness

Theorem
Schedule(j) returns OPT (j).

Proof.

Induction on j
> Base case: j = 0. Then Schedule(j) returns 0 = OPT (§)

> Inductive step: Schedule(j) returns

max(Schedule(j - 1), vj + Schedule(p(j))) (def of algorithm)
=max(OPT(j-1),v;+ OPT(p(j))) (induction)
= OPT (j) (structure theorem)

[]

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 13 /20

Running Time

Suppose p(j) =j -2 for all j:

v

p(1) = 0, p(j) =j-2

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 14 /20

Running Time

Suppose p(j) =j -2 for all j:

v

p(1) = 0, p(j) =j-2

Schedule(j) calls Schedule(j - 1) and
Schedule(j - 2)

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 14 /20

Running Time

Suppose p(j) =j -2 for all j: O ©)

: Q000 0
4 O ©

5 recursion tree

v

p(1) = 0, p(j) =j-2

Schedule(j) calls Schedule(j - 1) and
Schedule(j - 2)

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 14 /20

Running Time

®
Suppose p(j) =j -2 for all j: @))
] & & @ o
—— oNONONONONO
. ® ©
5 recursion tree

v

p(1) = 0, p() = j-2 Let T(n) be running time of Schedule(n) on

Schedule(j) calls Schedule(j - 1) and this instance
h le(f - 2
Schedu e(J) T(n)= T(n—1)+ T(n—2)+c

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 14 /20

Running Time

®
Suppose p(j) =j -2 for all j: @))
] & & @ o
—— oNONONONONO
. ® ©
5 recursion tree

v

p(1) = 0, p() = j-2 Let T(n) be running time of Schedule(n) on

Schedule(j) calls Schedule(j - 1) and this instance
h le(f - 2
Schedu e(J) T(n)= T(n—1)+ T(n—2)+c

Fibonacci numbers: exponential in n

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 14 /20

Fix: Memoization
|dea: avoid recomputation!

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 15/20

Fix: Memoization
|dea: avoid recomputation!

Table M of size n, initially all empty

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 15/20

Fix: Memoization
|dea: avoid recomputation!

Table M of size n, initially all empty

Schedule(j) {
If j =0 return 0;
else if M[j] nonempty return M[j];
else {
M[j] = max(Schedule(j - 1), vj + Schedule(p(j)));
return M[j];

}

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 15 /20

Fix: Memoization
|dea: avoid recomputation!

Table M of size n, initially all empty

Schedule(j) {
If j =0 return 0;
else if M[j] nonempty return M[j];
else {
M[j] = max(Schedule(j - 1), vj + Schedule(p(j)));
return M[j];

}

}

Correctness: (basically) same as before.

» Change inductive hypothesis to:
“Schedule(j) returns OPT (j) and after it returns, M[j] = OPT (j)"

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 15 /20

Running Time

The worst-case running time of Schedule(n) is at most O(n).

Theorem J

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 16 /20

Running Time

Theorem J

The worst-case running time of Schedule(n) is at most O(n).

Proof.
On call to Schedule(j):
> Either return entry from table (O(1) time), or

» Two recursive calls, then fill in table entry that was empty

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 16 /20

Running Time

Theorem

The worst-case running time of Schedule(n) is at most O(n).

Proof.
On call to Schedule(j):
> Either return entry from table (O(1) time), or
» Two recursive calls, then fill in table entry that was empty

= running time = O(1) x # recursive calls

Michael Dinitz Lecture 12: Dynamic Programming |

October 2, 2025

16 /20

Running Time

Theorem
The worst-case running time of Schedule(n) is at most O(n).

Proof.
On call to Schedule(j):
> Either return entry from table (O(1) time), or
» Two recursive calls, then fill in table entry that was empty

= running time = O(1) x # recursive calls

Fill in one (previously empty) table entry after 2 recursive calls
== At most 2n recursive calls

Michael Dinitz Lecture 12: Dynamic Programming |

October 2, 2025

16 /20

Running Time

Theorem
The worst-case running time of Schedule(n) is at most O(n).

Proof.
On call to Schedule(j):
> Either return entry from table (O(1) time), or
» Two recursive calls, then fill in table entry that was empty

= running time = O(1) x # recursive calls

Fill in one (previously empty) table entry after 2 recursive calls
== At most 2n recursive calls

So running time at most O(n)

Michael Dinitz Lecture 12: Dynamic Programming |

October 2, 2025

16 /20

Running Time

Theorem

The worst-case running time of Schedule(n) is at most O(n).

Proof.
On call to Schedule(j):
> Either return entry from table (O(1) time), or
» Two recursive calls, then fill in table entry that was empty

= running time = O(1) x # recursive calls

Fill in one (previously empty) table entry after 2 recursive calls
== At most 2n recursive calls

So running time at most O(n) O |
Dynamic Programming!
Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 16 /20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 17 /20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?
> Idea 1: keep track of solution in another table (or in M)

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 17 /20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?

> Idea 1: keep track of solution in another table (or in M)

> Uses lots of extra space, need to be careful about how much time spend copying/moving
solutions

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 17 /20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?

> Idea 1: keep track of solution in another table (or in M)

> Uses lots of extra space, need to be careful about how much time spend copying/moving
solutions

> Better idea: Backtrack through completed table!

0 1C,C)) +ue = MCelal) pu,
vor(a1) - MCe<[)

L)

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 17 /20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?

> Idea 1: keep track of solution in another table (or in M)

> Uses lots of extra space, need to be careful about how much time spend copying/moving
solutions

> Better idea: Backtrack through completed table!

Solution(§) {
If j =0 then return &;
else if vj + M[p(j)] > M[j - 1] return {j} u Solution(p(j));
else return Solution(j — 1);

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 17 /20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?

> Idea 1: keep track of solution in another table (or in M)

> Uses lots of extra space, need to be careful about how much time spend copying/moving
solutions

> Better idea: Backtrack through completed table!

Solution(§) {
If j =0 then return &;
else if vj+ M[p(j)] > M[j - 1] return {j} u Solution(p(j));
else return Solution(j — 1);

Correctness: Direct from correctness of previous algorithm
Running Time: O(n)

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 17 /20

Memoization vs lteration: Top-Down vs Bottom-Up
Previous technique: “Memoization”, “Top-Down Dynamic Programming”
» Remember outcome of recursive calls

» Starts at “top” problem, works way “down” via recursion

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 18 /20

Memoization vs lteration: Top-Down vs Bottom-Up
Previous technique: “Memoization”, “Top-Down Dynamic Programming”
» Remember outcome of recursive calls

» Starts at “top” problem, works way “down” via recursion

Alternative: “Bottom-Up Dynamic Programming”
> Start at “bottom” of table, work way up

» Every table entry we need already filled in!

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 18 /20

Memoization vs lteration: Top-Down vs Bottom-Up
Previous technique: “Memoization”, “Top-Down Dynamic Programming”
» Remember outcome of recursive calls N

» Starts at “top” problem, works way “down” via recursion

Alternative: “Bottom-Up Dynamic Programming”

> Start at “bottom” of table, work way up fi
> Every table entry we need already filled in! '
Schedule {

M[0] = O;

for(i=1to n) {
| M = e+ M), M <10

return M[n];

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 18 /20

Top-Down vs Bottom-Up (cont'd)

Some people only call bottom-up dynamic programming, but this is ridiculous

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 19/20

Top-Down vs Bottom-Up (cont'd)

Some people only call bottom-up dynamic programming, but this is ridiculous

Top-Down pros:

> If M[j] doesn't need to be computed (doesn't appear in recursion tree for M[n]), won't
waste time on it!

> Algorithm design relatively easy: write recursive algorithm, remember (memoize) answers

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 19/20

Top-Down vs Bottom-Up (cont'd)

Some people only call bottom-up dynamic programming, but this is ridiculous

Top-Down pros:

> If M[j] doesn't need to be computed (doesn't appear in recursion tree for M[n]), won't
waste time on it!

> Algorithm design relatively easy: write recursive algorithm, remember (memoize) answers

Bottom-up pros:
> Easier to analyze running time: sum over all table entries of time to compute entry

> Often faster in practice (iteration vs recursion)

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 19/20

Top-Down vs Bottom-Up (cont'd)

Some people only call bottom-up dynamic programming, but this is ridiculous

Top-Down pros:

> If M[j] doesn't need to be computed (doesn't appear in recursion tree for M[n]), won't
waste time on it!

> Algorithm design relatively easy: write recursive algorithm, remember (memoize) answers

Bottom-up pros:
> Easier to analyze running time: sum over all table entries of time to compute entry

> Often faster in practice (iteration vs recursion)

Use whatever you feel more comfortable with (most experienced people use bottom-up)

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 19/20

Principles of Dynamic Programming (CLRS 15.3)

Main step: break problem into subproblems
> WIS: Subproblems {1,...,i} (prefixes)
> Often determined by choice (“is nin §*7")

> Want small (polynomial) number of subproblems (table entries)

Prove optimal substructure: Optimal solution to subproblem can be found from optimal
solutions to smaller subproblems

> Not an algorithmic statement! Smaller very important!

Turn optimal substructure theorem into algorithm (top-down or bottom-up) which fills in table
indexed by subproblems
» Correctness: induction and optimal substructure theorem

» Running time: sum of time of all table entries
> Often (not always) just (# table entries) x (time per entry)

Michael Dinitz Lecture 12: Dynamic Programming | October 2, 2025 20/20

