
601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz and Jessica Sorrell
Topic: Dynamic Programming II Date: 10/7/25

13.1 Introduction

Today we’re going to do a couple more examples of dynamic programming. While the particular
problems that we’re going to talk about are important and very nice, we’re spending a class on
them not so much because of their inherent interest, but to see some more examples of dynamic
programming. Since last class I mentioned the usefulness of dynamic programming in string algo-
rithms, we’re first going to talk about the Longest Common Subsequence (LCS) problem. Then,
since we’ve spent some time recently on binary search trees, we’re going to talk about the Optimal
Binary Search Tree problem.

13.2 Longest Common Subsequence

13.2.1 Definitions

While there are many notions of similarity between strings, and many problems that we would
like to optimize over strings, a natural problem (and notion of similarity) is the Longest Common
Subsequence.

Definition 13.2.1 Given a sequence X = (x1, x2, . . . , xm) (where each xi is an element of some
alphabet, e.g. {0, 1} or the English alphabet), another sequence Z = (z1, . . . , zk) is a subsequence
of X if there exists a strictly increasing sequence (i1, i2, . . . , ik) of indices of X such that xij = zj
for all j ∈ {1, 2, . . . , k}.
Less formally, Z is a subsequence of X if we can find Z in X, where we are allowed to skip elements
of X. In a substring, on the other hand, we are not allowed to skip elements of X – slightly
more formally, in a substring we require ij = ij−1 + 1 for all j ∈ {2, 3, . . . , k}. So, for example,
(B,C,D,B) is a subsequence of (A,B,C,B,D,A,B) but is not a substring. For today, we’re only
going to be concerned with subsequences.

Given two sequences X and Y , we say that Z is a common subsequence if Z is a subsequence of
X and Z is a subsequence of Y . In the Longest Common Subsequence problem, we are given two
sequences X = (x1, . . . , xm) and Y = (y1, . . . yn) and wish to find the common subsequence of
maximum length.

13.2.2 Dynamic programming algorithm

We first need to figure out what our subproblems should be, based on what kind of optimal sub-
structure result we can prove. Let Xi = (x1, . . . , xi) be the length i prefix of X, and similarly
let Yi be the length i prefix of Y . Let OPT (i, j) be the longest common subsequence of Xi and
Yj (so OPT (m,n) is the subsequence that we are actually looking for). Then we can relate these
subproblems with the following theorem. Informally, it says that if the last two entries of Xi and

1

Yj match up then they must be the last element of the LCS, and if they do not match up then the
LCS must be the LCS of some prefixes.

Theorem 13.2.2 Let Z = (z1, . . . , zk) be an LCS of Xi and Yj (so Z = OPT (i, j)).

1. If xi = yj, then zk = xi = yj and Zk−1 = OPT (i− 1, j − i)

2. If xi ̸= yj, then if zk ̸= xi, Z = OPT (i− 1, j)

3. If xi ̸= yj, then if zk ̸= yj, Z = OPT (i, j − 1)

Proof: We consider each of the three cases.

1. Suppose that zk ̸= xi. Then we can add an extra element to z by setting zk+1 = xi = yj
and get a common subsequence of length k + 1, violating our assumption that Z is an LCS
of Xi and Yj . Thus zk = xi = yj . Thus Zk−1 is a common subsequence of Xi−1 and Yj−1;
we just need to show that it is the longest common subsequence. Suppose there is a common
subsequence W of length more than k− 1. Then by appending xi = yj = zk to W , we get an
LCS of Xi and Yj of length more than k, again contradicting our assumption.

2. If xi ̸= yj then it cannot be the case that both xi and yj are equal to zk. If xj ̸= zk, then the
index ik which places zk into X must be less than i. Thus Z is an LCS of Xi−1 and Yj .

3. Symmetric to previous case.

With this theorem in hand, we can naturally write a recurrence relation/recursive algorithm. Math-
ematically, this is given by the relation

OPT (i, j) =


∅ if i = 0 or j = 0,

OPT (i− 1, j − 1) ◦ xi if i, j > 0 and xi = yj

max(OPT (i, j − 1), OPT (i− 1, j)) if i, j > 0 and xi ̸= yj

(13.2.1)

If we implement this using the obvious recursive algorithm, then it’s not hard to construct examples
that take exponential time (good exercise to do at home!). But we can notice that there are only nm
different subproblems, so dynamic programming gives a polynomial-time solution! As always, we
can write either a top-down memoized algorithm or a bottom-up DP algorithm. There’s actually a
somewhat interesting thing to note about the bottom-up algorithm: since we have a two-dimensional
table, we have to make sure that the iteration we use makes sense. That is, when we try to fill in
a table entry, we need to make sure that the table entries we use are already filled in. This was
obvious in the interval scheduling problem, since when we filled in M [j] we just needed the values
of M [i] for i < j. But now the table is two-dimensional, so what order should we fill it in? It turns
out that, as long as we initialize appropriately, we can iterate through one parameter and then the
other in a straightforward way.

2

LCS(X,Y) {
f o r (i = 0 to m) M[i , 0] = 0 ;
f o r (j = 0 to n) M[0 , j] = 0 ;
f o r (i = 1 to m) {

f o r (j = 1 to n) {
i f (xi = yj)
M[i , j] = 1 + M[i −1, j −1] ;

e l s e
M[i , j] = max(M[i , j −1] , M[i −1, j]) ;

}
}
re turn M[m, n] ;

}

Clearly the running time of this algorithm is O(mn), since it is just two nested for loops. To prove
correctness, we claim that M [i, j] = |OPT (i, j)|. Note that this is clearly true by (13.2.1) for the
case where i = 0 or j = 0. For every other case, we will prove this by induction on i + j. For the
base case, when i+ j = 0 then i = j = 0, and by construction M [0, 0] = 0 = |OPT (0, 0)|. For the
inductive step, consider M [i, j]. If xi = yj , then the algorithm sets

M [i, j] = 1 +M [i− 1, j − 1] = 1 + |OPT (i− 1, j − 1)| = |OPT (i, j)|,

where the second equality is by induction and the final equality is by (13.2.1). Similarly, if xi ̸= yj ,
then the algorithm sets

M [i, j] = max(M [i, j − 1],M [i− 1, j]) = max(|OPT (i, j − 1)|, |OPT (i− 1, j)|) = |OPT (i, j)|,

where the second equality is by induction and the third is by (13.2.1).

As with weighted interval scheduling, once we’ve filled in the table M with the appropriate lengths,
we can do a second pass to figure out the subsequence itself.

13.3 Optimal Binary Trees

13.3.1 Definitions

The next example of dynamic programming that we will consider is the problem of constructing
an optimal binary search tree. In some applications, the keys are fixed and we also have a good
idea of approximately how often each key is accessed. For example, if we are building a program
to translate from English to some other language, we might store each English word as a key in a
binary search tree, and the translation of the word as the data for that node. If there are n words in
the language, then we can build a balanced binary search tree and so get lookup time of O(log n).
But clearly some words appear far more often than others, so since the lookup time is the depth of
the node, we want more frequently accessed items to be closer to the root (while still maintaining
the fact that we have a binary search tree).

3

Let’s formalize this a bit. Suppose we are given a sequence of n distinct keys k1 < k2 < · · · < kn,
and for each i we are given a probability pi that a search will be for ki (so

∑n
i=1 pi = 1). The book

does a slightly more complicated analysis that allows searches for keys not in the input, but for
now let’s ignore this.

If we set for convention that the cost of a search is the number of nodes examined, and we define
(as usual) the depth of a node to be the distance from the root, then clearly the cost of search for
key ki in tree T is depthT (ki) + 1. So for a binary search tree T on our input, the expected cost of
a search is

n∑
i=1

pi(depthT (ki) + 1) = 1 +

n∑
i=1

pi · depthT (ki) (13.3.2)

Our goal is to find the binary search tree T which minimizes this expected cost.

13.3.2 Dynamic programming algorithm

As always, we need to define the subproblems we consider and use an optimal substructure ar-
gument. This is pretty straightforward: suppose that kr is the root. Then k1, . . . , kr−1 are in
the left subtree, and kr+1, . . . , kn are in the right subtree. And clearly the left subtree should be
optimal for k1, . . . , kr, while the right subtree should be optimal for kr+1, . . . , kn – if one of them
was suboptimal, then we could simply use the optimal subtree instead and the expected cost would
decrease.

Slightly more formally, for 1 ≤ i ≤ n and i ≤ j ≤ n, let OPT (i, j) denote the binary search tree T
on keys ki, . . . , kj which minimizes c(T) =

∑j
a=i pa(depthT (ka)+1) (note that now the probabilities

do not necessarily sum to 1). So we are looking for OPT (1, n). By convention, we will say that
OPT (i, j) is the empty tree (no nodes) if j < i.

Theorem 13.3.1 Let kr be the root of OPT (i, j). Then the left subtree of OPT (i, j) is OPT (i, r−
1), and the right subtree of OPT (i, j) is OPT (r + 1, j).

Proof: Let T = OPT (i, j), let TL be the left subtree of T , and let TR be the right subtree of T .
Let T ′ be OPT (i, r − 1), and suppose that TL ̸= T ′. Since TL and T ′ are on the same set of keys
and T ′ is optimal, by definition we know that c(T ′) < c(TL) (let’s assume no ties for now). Let T̂
denote the tree of ki, . . . , kj that we would get by replacing TL with T ′. Then

c(T̂) =

j∑
a=i

pa(depthT̂ (ka) + 1)

=
r−1∑
a=i

(pa(depthT ′(ka) + 2)) + pr +

j∑
a=r+1

(pa(depthTR
(ka) + 2))

=

r−1∑
a=i

(pa(depthT ′(ka) + 1)) +
r−1∑
a=i

pa + pr +

j∑
a=r+1

(pa(depthTR
(ka) + 1)) +

j∑
a=r+1

pa

= c(T ′) +
r−1∑
a=i

pa + pr + c(TR) +

j∑
a=r+1

pa

4

< c(TL) +
r−1∑
a=i

pa + pr + c(TR) +

j∑
a=r+1

pa

=
r−1∑
a=i

(pa(depthTL
(ka) + 1)) +

r−1∑
a=i

pa + pr +

j∑
a=r+1

(pa(depthTR
(ka) + 1)) +

j∑
a=r+1

pa

=
r−1∑
a=i

(pa(depthTL
(ka) + 2)) + pr +

j∑
a=r+1

(pa(depthTR
(ka) + 2))

=

j∑
a=i

pa(depthT (ka) + 1) = c(T)

This is a contradiction, since the fact that T = OPT (i, j) means that c(T) < c(T̂) by definition.
Thus TL = T ′.

A symmetric argument works to prove that TR must equal OPT (r + 1, j).

Corollary 13.3.2 c(OPT (i, j)) =
∑j

a=i pa +mini≤r≤j(c(OPT (i, r − 1)) + c(OPT (r + 1, j)))

Proof: Let kr be the root of OPT (i, j). Then from Theorem 13.3.1, we know that the left subtree
of OPT (i, j) is OPT (i, k − 1) and the right subtree of OPT (i, j) is OPT (r + 1, j). Thus the total
cost of OPT (i, j) is

c(OPT (i, j)) =

j∑
a=i

pa(depthOPT (i,j)(ka) + 1)

=

r−1∑
a=i

(pa(depthOPT (i,r−1)(ka) + 2)) + pr +

j∑
a=r+1

pa(depthOPT (r+1,j)(ka) + 2)

=

j∑
a=i

pa +

r−1∑
a=i

(pa(depthOPT (i,r−1)(ka) + 1)) +

j∑
a=r+1

pa(depthOPT (r+1,j)(ka) + 1)

=

j∑
a=i

pa + c(OPT (i, r − 1)) + c(OPT (r + 1, j)).

On the other hand, by the same analysis, for any other tree for (i, j) rooted at r′ the cost
would be

∑j
a=i pa + c(OPT (i, r′ − 1)) + c(OPT (r′ + 1, j)). Thus c(OPT (i, j)) =

∑j
a=i pa +

mini≤r≤j(c(OPT (i, r − 1)) + c(OPT (r + 1, j))).

With this theorem in hand, it is now straightforward to give a recurrence for M [i, j], which will
be equal to c(OPT (i, j)). When computing M [i, j], we can simply try all of the different possible
roots and take the one with minimum cost, where we depend on Theorem 13.3.1 to use previously-
computed costs of smaller trees.

M [i, j] =

{
0 if i > j

mini≤r≤j

(∑j
a=i pa +M [i, r − 1] +M [r + 1, j]

)
if i ≤ j

(13.3.3)

5

Theorem 13.3.3 M [i, j] = c(OPT (i, j))

Proof: We prove this by induction on j − i. When j − i is negative it is clearly true since then
we set M [i, j] = 0 and by convention we said that OPT (i, j) = 0. And when j − i = 0 it is clearly
true since then i = j and the claim reduces to M [i, j] = pi, and clearly c(OPT (i, i)) = pi.

For the inductive step, consider an i and j with i < j. By the inductive hypothesis, M [i′, j′] =
c(OPT (i′, j′)) for all i′, j′ with j′ − i′ < j − i. Suppose that kr is the root of OPT (i, j). When
computing M [i, j], by the definition of the algorithm we get a value of

M [i, j] = min
i≤r≤j

(
j∑

a=i

pa +M [i, r − 1] +M [r + 1, j]

)

= min
i≤r≤j

(
j∑

a=i

pa + c(OPT (i, r − 1)) + c(OPT (r + 1, j))

)
(13.3.4)

= c(OPT (i, j)), (13.3.5)

where in (13.3.4) we used the inductive hypothesis and in (13.3.5) we used Corollary 13.3.2.

As always, since the subproblems overlap it is not hard to show that if we do the naive recursive
algorithm it will take exponential time. But if we do either bottom-up dynamic programming or
top-down dynamic programming (memoization), we can avoid a lot of the recomputation and get
the running time down to polynomial.

It’s easy to see how to do this if we use memoization. For bottom-up, though, it’s not clear what
order we should iterate through the table. It’s not hard to see that the obvious approaches (iterating
through i and then j to compute M [i, j] or vice versa) fail. So instead we’ll do it in order of j − i.
The details of this are in the book, but are also a good exercise.

What is the running time if we do dynamic programming? There are clearly n2 table entries.
To compute entry M [i, j], we need to try all possible r between i and j, so the running time is
O(|j − i|) = O(n). Thus the overall running time is O(n3).

13.3.3 Bonus Information

For this problem, there’s a natural extension: what if the distribution that we’re give is wrong?
That is, what if we are given p values and compute the optimal BST for them, but the true
probabilities are different. Surprisingly, this has been open for a very long time. We recently gave
an algorithm with essentially optimal bounds. If you’re interested, see [DIL+24]

References

[DIL+24] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Aidin Niaparast, and
Sergei Vassilvitskii. Binary search with distributional predictions. In Advances in Neural
Information Processing Systems (NeurIPS 2024), 2024.

6

	Introduction
	Longest Common Subsequence
	Definitions
	Dynamic programming algorithm

	Optimal Binary Trees
	Definitions
	Dynamic programming algorithm
	Bonus Information

