Lecture 13: Dynamic Programming Il

Michael Dinitz

October 7, 2025
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025

1/24

Introduction

Today: two more examples of dynamic programming
» Longest Common Subsequence (strings)
» Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 2/24

Longest Common Subsequence

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 3/24

Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a- z}, etc.)

Definition: A sequence Z = (zy,...,2x) is a subsequence of X = (x1,...,Xm) if there
exists a strictly increasing sequence (i1, fp, . . . , ix) such that xj; = zj forall j € {1,2,...,k}.

Example: (B, C, D, B) is a subsequence of (A,B,C,B,D, A, B)

> Allowed to skip positions, unlike substring!

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 4/24

Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a- z}, etc.)

Definition: A sequence Z = (zy,...,2x) is a subsequence of X = (x1,...,Xm) if there
exists a strictly increasing sequence (i1, fp, . . . , ix) such that xj; = zj forall j € {1,2,...,k}.

Example: (B, C, D, B) is a subsequence of (A,B,C,B,D, A, B)

> Allowed to skip positions, unlike substring!

Definition: In Longest Common Subsequence problem (LCS) we are given two strings
X =(x1y.--5%m) and Y = (y1,...¥n). Need to find the longest Z which is a subsequence
of both X and Y.

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 4/24

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 5/24

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> X = (X1,X2,...,X,') (SO X =Xm)
> Y_l = (.YhyZa"'vyj) (SO Y = Yn)

Michael Dinitz Lecture 13: Dynamic Programming Il

October 7, 2025

5/24

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> X = (X],Xz,...,X,') (SO X =Xm)
S Y= (Y2) (50 Y = Vo)

Definition: Let OPT (i, j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT (m, n)

» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 5/24

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> X = (X],Xz,...,X,') (SO X =Xm)
S Y= (Y2) (50 Y = Vo)

Definition: Let OPT (i, j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT (m, n)
» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 5/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 6/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).

1. IfX,'

=Yj:

Michael Dinitz

Lecture 13: Dynamic Programming Il

October 7, 2025

6/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. If x; = yj: then z, = x; = yj and Zy_1 = OPT(i-1,j-1)

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 6/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. If x; = yj: then z, = x; = yj and Zy_1 = OPT(i-1,j-1)
2. If xj # yj and z\ # x;:

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 6/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).

1. If x; = yj: then z, = x; = yj and Zy_1 = OPT(i-1,j-1)
2. Ifxj # yj and z # x;j: then Z = OPT (i - 1,j)

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 6/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. If x; = yj: then z, = x; = yj and Zy_1 = OPT(i-1,j-1)
2. Ifxj # yj and z # x;j: then Z = OPT (i - 1,j)

3. If x; # yj and zy # y;j:

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 6/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. If x; = yj: then z, = x; = yj and Zy_1 = OPT(i-1,j-1)
2. Ifxj # yj and z # x;j: then Z = OPT (i - 1,j)
3. Ifxj #yj and zx # yj: then Z = OPT (i,j - 1)

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 6/24

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 7/24

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z # a.

Michael Dinitz Lecture 13: Dynamic Programming Il

October 7, 2025

7/24

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 7/24

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zy_1 # OPT(i-1,j-1).

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 7/24

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zy_1 # OPT(i-1,j-1).
= 3IW LCS of Xj_1, Yj_1 of length > k-1 = >k
= (W, a) common subsequence of X;, Y;j of length > k
» Contradiction to Z being LCS of X; and Y; Ol

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 7/24

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 8/24

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)

Proof.
Since zx # x;, Z a common subsequence of X;_1, ¥; = |Z|<|OPT (i - 1,j)|

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 8/24

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)

Proof.
Since z # x;, Z a common subsequence of X;_1, Y; = |Z| <|OPT (i - 1,j)|

OPT (i - 1,j) a common subsequence of Xj, Y;
= |OPT(i-1,j)|<|OPT(i,j)|=|Z| (def of OPT (i,j) and Z)

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 8/24

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)

Proof.
Since z # x;, Z a common subsequence of X;_1, Y; = |Z| <|OPT (i - 1,j)|

OPT (i - 1,j) a common subsequence of Xj, Y;
= |OPT(i-1,j)|<|OPT(i,j)|=|Z| (def of OPT (i,j) and Z)

—s Z=0PT(i-1,j) O

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 8/24

Optimal Substructure: Proof (1l1)

Case 3: If x; # yj and z, # yj then Z = OPT (i,j-1)

Proof.
Symmetric to Case 2. O

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 9/24

Structure Corollary

Corollary

@ ifi=0orj=0,
OPT(i,j) ={OPT(i-1,j-1) o x; ifi,j >0 and x; = y;
max(OPT (i,j-1),0PT(i-1,j)) ifi,j>0 and x; # y;

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 10 /24

Structure Corollary

Corollary
@ ifi=0orj=0,
OPT(i,j) ={OPT(i-1,j-1)ox; ifi,j>0 and x; = y;
max(OPT (i,j-1),0PT(i-1,j)) ifi,j>0 and x; # y;

Gives obvious recursive algorithm
» Can take exponential time (good exercise at home!)

Dynamic Programming!
» Top-Down: are problems getting “smaller”? What does “smaller” mean?
» Bottom-Up: two-dimensional table! What order to fill it in?

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 10 /24

Dynamic Programming Algorithm

LCS(X,Y) {
for(i =0 to m) M[i,0] = 0;
for(j = 0 to n) M[0,j] =0;
for(i =1 to m) {
for(j=1ton) {

if(x; = yj)
Mli,jl=1+M[i-1,j-1];
else
} M['a.l] = max(M[i,j— l]a M[i_ la.i]);

}

return M[m, n];

}

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 11/24

Dynamic Programming Algorithm

LCS(X,Y) {
for(i =0 to m) M[i,0] = 0;
for(j = 0 to n) M[0,j] =0;
for(i =1 to m) {
for(j=1ton) {

if(xi = y;) N

M[,’JJ] =1+M[i-1,j-1]; Running Time: O(mn)
else
\ Mli,j] = max(M[i,j - 1], M[i - 1,j]);

}

return M[m, n];

}

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 11/24

Correctness

Theorem
M[iaj]=|OPT(ivj)| J

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 12 /24

Correctness

Theorem
Mli,j] =|OPT (i, j)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)

Michael Dinitz Lecture 13: Dynamic Programming Il

October 7, 2025

12/24

Correctness

Theorem
M[ia.i] = |OPT(i7.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)

Base Case: i +j=0 = i=j=0 = M]Ji,j]=0=|0PT(i,j)|

Michael Dinitz

Lecture 13: Dynamic Programming Il October 7, 2025 12 /24

Correctness

Theorem
M[ia.i] = |OPT(i7.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M[i,j]=0=|OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0o0rj=0, then M[i,j]=0=|OPT(i,j)|

Michael Dinitz Lecture 13: Dynamic Programming Il

October 7, 2025

12/24

Correctness

Theorem
M[ia.i] = |OPT(ia.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M[i,j]=0=|OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0o0rj=0, then M[i,j]=0=|OPT(i,j)|
2. If x; = yj, then M[i,jl=1+M[i-1,j-1]=1+|OPT(i-1,j-1)|=|OPT(i,j)|

Michael Dinitz

Lecture 13: Dynamic Programming Il October 7, 2025 12 /24

Correctness

Theorem
M[ia.i] = |OPT(ia.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M[i,j]=0=|OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0o0rj=0, then M[i,j]=0=|OPT(i,j)|

2. If x; = yj, then M[i,j]=1+M[i-1,j-1]=1+|OPT(i-1,j-1)|=|OPT(i,j)|
3. If x; # yj, then

M['a./] = max(M[i,j— 1]7 M['_ laj])

= max(|OPT(ia.i- l)la |OPT(i_ laf)l)
=|OPT (i, j)|

Lecture 13: Dynamic Programming Il

(def of algorithm)
(induction)
(structure thm/corollary)

October 7, 2025 12 /24

Michael Dinitz

Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 14.4

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 13 /24

Optimal Binary Search Trees

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 14 /24

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < kp <-+- < ky,
» For each i € [n], probability p; that we search for k; (so ¥, pj = 1)

What's the best binary search tree for these keys and frequencies?

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 15 /24

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < kp <-+- < ky,
» For each i € [n], probability p; that we search for k; (so ¥, pj = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is deptht(k;) +1 (say depth of root = 0)
== E[cost of search in T]= X" | pj(deptht(k;) +1)

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025

15 /24

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < kp <-+- < ky,
» For each i € [n], probability p; that we search for k; (so ¥, pj = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is deptht(k;) +1 (say depth of root = 0)
== E[cost of search in T]= X" | pj(deptht(k;) +1)

Definition: ¢(T) = X, pi(deptht(k;) +1)

Problem: Find search tree T minimizing cost.

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025

15 /24

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 16 /24

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... pn, but with p; - pj,1 extremely small (say 1/2")

Michael Dinitz

AN

®

Lecture 13: Dynamic Programming Il

October 7, 2025

16 /24

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... pn, but with p; - pj,1 extremely small (say 1/2")

Michael Dinitz

AN

®

E|[cost of search in T] > Q(n)

Lecture 13: Dynamic Programming Il

October 7, 2025

16 /24

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... pn, but with p; - pj,1 extremely small (say 1/2")

L
®\ E[cost of search in T] > Q(n)
C
@\ Balanced search tree: E[cost] < O(log n)

AN

®

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 16 /24

Intuition

Suppose root is k,. What does optimal tree look like?

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 17 /24

Intuition

Suppose root is k,. What does optimal tree look like?

®

OF £ Orr £
“(l,) kr'is (l('l') 7 ko.}

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 17 /24

Subproblems

Definition
Let OPT (i,j) with i < j be optimal tree for keys {kj, kis1,...,kj}: tree T minimizing
c(T) = Z{,,=,- Pa(deptht(ka) +1)

By convention, if i > j then OPT (i,j) empty
So overall goal is to find OPT (1, n).

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 18 /24

Subproblems

Definition
Let OPT (i,j) with i < j be optimal tree for keys {kj, kis1,...,kj}: tree T minimizing
c(T) = Z{,,=,- Pa(deptht(ka) +1)

By convention, if i > j then OPT (i,j) empty
So overall goal is to find OPT (1, n).
Theorem (Optimal Substructure)

Let k, be the root of OPT (i,j). Then the left subtree of OPT (i,j) is OPT (i,r-1), and
the right subtree of OPT (i,j) is OPT (r +1,j).

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 18 /24

Proof Sketch of Optimal Substructure

Definitions:

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

» Suppose for contradiction Tp + OPT (i,r-1), let T"= OPT (i,r-1)
= ¢(T') <c(T.) (def of OPT (i,r-1))

» Let T be tree get by replacing T, with T’

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025

19/24

Proof Sketch of Optimal Substructure

Definitions:

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

» Suppose for contradiction Tp + OPT (i,r-1), let T"= OPT (i,r-1)
= ¢(T') <c(T.) (def of OPT (i,r-1))

» Let T be tree get by replacing T, with T’

Whole bunch of math (see lecture notes): get that ¢(T) < ¢(T)
Contradicts T = OPT (i,j)

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025

19/24

Proof Sketch of Optimal Substructure

Definitions:

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

» Suppose for contradiction Tp + OPT (i,r-1), let T"= OPT (i,r-1)
= ¢(T') <c(T.) (def of OPT (i,r-1))

» Let T be tree get by replacing T, with T’

Whole bunch of math (see lecture notes): get that ¢(T) < ¢(T)
Contradicts T = OPT (i,j)

Symmetric argument works for Tg = OPT (r +1,j)

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025

19/24

Cost Corollary
Corollary

c(OPT(i,j)) = ¥)_. pa+minic,¢;(c(OPT (i, r-1)) + c(OPT (r + 1,j)))

Let k, be root of OPT (i,j)

c(OPT(i,j)) = 3" pa(depthopr i jy (ka) +1)

a=i
r-1 J

= Y (pa(depthopr(i,_1)(ka) +2)) +pr+ Y. pa(depthopr(,.1,j)(ka) +2)
a=i a=r+1
Jj r-1 j

=Y Pa+ Y. (Pa(depthopr(ir-1)(ka) +1)) + Y. pa(depthopr(r.1j)(ka) +1)
a=i a=i a=r+1l

= ipa+ c(OPT (i,r-1)) + c(OPT(r + 1,j)).

a=i

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 20/24

Cost Corollary
Corollary

c(OPT(i,j)) = ¥)_. pa+minic,¢;(c(OPT (i, r-1)) + c(OPT (r + 1,j)))

Let k, be root of OPT (i,j)

c(OPT(i,j)) = 3" pa(depthopr i jy (ka) +1)

a=i
r-1 J

= Y (pa(depthopr(i,_1)(ka) +2)) +pr+ Y. pa(depthopr(,.1,j)(ka) +2)
a=i a=r+1
Jj r-1 j

=Y Pa+ Y. (Pa(depthopr(ir-1)(ka) +1)) + Y. pa(depthopr(r.1j)(ka) +1)
a=i a=i a=r+1l

= ipa+ c(OPT (i,r-1)) + c(OPT(r + 1,j)).

a=i

Same logic holds for any possible root == take min
Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 20/24

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 21/24

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller?

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 21/24

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every
recursive call.

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 21/24

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every
recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j -i.

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 21/24

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every
recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j -i.
» Base case: if j—i <0 then M[i,j] = OPT(i,j)=0

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 21/24

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min;S,gj(Zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every

recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j -i.
» Base case: if j—i <0 then M[i,j] = OPT(i,j) =
» Inductive step:

M([i,j] = min (Zpa+M[l r- 1]+M[r+1,1]) (alg def)
isr<j
= min (Z pa+c(OPT(i,r-1))+c(OPT(r+ 1,1))) (induction)
i<r<j
=c(OPT(i,j)) (cost corollary)

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 21/24

Algorithm: Bottom-up
What order to fill the table in?
» Obvious approach: for(i =1 to n-1) for(j =i +1 to n) Doesn't work!

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 22/24

Algorithm: Bottom-up

What order to fill the table in?
» Obvious approach: for(i =1 to n-1) for(j =i +1 to n) Doesn't work!
» Take hint from induction: j - i

OBST {
Set M[i,j] =0 for all j > i;
Set M[i,i] = p; for all i
forfl=1ton-1) {
for(i=1ton-2¢) {
j=i+#t
M[i,j] = minc,<; (Z{k’.pa +M[i,r-1]+M[r+ 1,j]);
}
}
return M[1, n];
}

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025

22/24

Analysis

Correctness: same as top-down

Running Time:

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 23 /24

Analysis

Correctness: same as top-down

Running Time:
» 4 table entries:

Michael Dinitz

Lecture 13: Dynamic Programming Il

October 7, 2025

23 /24

Analysis

Correctness: same as top-down

Running Time:
> # table entries: O(n?)

Michael Dinitz

Lecture 13: Dynamic Programming Il

October 7, 2025

23 /24

Analysis

Correctness: same as top-down

Running Time:
> # table entries: O(n?)
» Time to compute table entry M[i,j]:

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 23 /24

Analysis

Correctness: same as top-down

Running Time:
> # table entries: O(n?)
» Time to compute table entry M[i,j]: O(j-i) = O(n)

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 23 /24

Analysis

Correctness: same as top-down

Running Time:

> # table entries: O(n?)

» Time to compute table entry M[i,j]: O(j-i) = O(n)
Total running time: O(n?)

Michael Dinitz Lecture 13: Dynamic Programming Il

October 7, 2025

23 /24

Bonus Content

Obvious Question: Robustness.

» What if given distribution is wrong?

Want algorithm that gives a solution with cost a function of true optimal cost, “distance”
between given distribution and true distribution.

Dinitz, Im, Lavastida, Moseley, Niaparast, Vassilvitskii. Binary Search Trees with
Distributional Predictions. NeurlPS '24

Michael Dinitz Lecture 13: Dynamic Programming Il October 7, 2025 24 /24

