Lecture 13: Dynamic Programming Il

Jessica Sorrell

October 7, 2025
601.433/633 Introduction to Algorithms
Slides by Michael Dinitz

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025

1/25

Introduction

Today: two more examples of dynamic programming
» Longest Common Subsequence (strings)
» Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 2/25

Longest Common Subsequence

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 3/25

Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a- z}, etc.)

Definition: A sequence Z = (zy,...,2x) is a subsequence of X = (x1,...,Xm) if there
exists a strictly increasing sequence (i1, fp, . . . , ix) such that xj; = zj forall j € {1,2,...,k}.

Example: (B, C, D, B) is a subsequence of (A,B,C,B,D, A, B)

> Allowed to skip positions, unlike substring!

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 4/25

Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a- z}, etc.)

Definition: A sequence Z = (zy,...,2x) is a subsequence of X = (x1,...,Xm) if there
exists a strictly increasing sequence (i1, fp, . . . , ix) such that xj; = zj forall j € {1,2,...,k}.

Example: (B, C, D, B) is a subsequence of (A,B,C,B,D, A, B)

> Allowed to skip positions, unlike substring!

Definition: In Longest Common Subsequence problem (LCS) we are given two strings
X =(x1y.--5%m) and Y = (y1,...¥n). Need to find the longest Z which is a subsequence
of both X and Y.

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 4/25

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 5/25

Subproblems
First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> X = (X1,X2,...,X,') (SO X =Xm)
> Y_l = (.YhyZa"'vyj) (SO Y = Yn)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 5/25

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> X = (X],Xz,...,X,') (SO X =Xm)
S Y= (Y2) (50 Y = Vo)

Definition: Let OPT (i, j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT (m, n)

» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 5/25

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> X = (X],Xz,...,X,') (SO X =Xm)
S Y= (Y2) (50 Y = Vo)

Definition: Let OPT (i, j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT (m, n)
» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 5/25

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 6/25

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
L If x; = yj:

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 6/25

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. Ifxj=yj: then zx = xj=yj and Z = OPT (i -1,j-1) o x;

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 6/25

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. Ifxj=yj: then zx = xj=yj and Z = OPT (i -1,j-1) o x;
2. If xj # yj and z\ # x;:

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 6/25

Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).

1. Ifx;=yj: then zx = x; =yj and Z = OPT (i -1,j-1) o x;
2. Ifxj # yj and z # x;j: then Z = OPT (i - 1,j)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 6/25

Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. Ifx;=yj: then zx = x; =yj and Z = OPT (i -1,j-1) o x;
2. Ifxj # yj and z # x;j: then Z = OPT (i - 1,j)

3. If x; # yj and z\ # y;j:

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 6/25

Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. Ifx;=yj: then zx = x; =yj and Z = OPT (i -1,j-1) o x;
2. Ifxj # yj and z # x;j: then Z = OPT (i - 1,j)

3. Ifxj # yj and zi # yj: then Z = OPT (i,j - 1)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 6/25

Optimal Substructure

1. Let X; = ABCHIJ, Y; = ABDFGHJ, so Z = ABHJ
2. Let X; = ABCDHI, Y; = ABDFGH, so Z = ABDH
3. Let Xj = ABCDEF, Y; = ABDFGHJ, so Z = ABDF

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. Ifxj=yj: then zx = x; =yj and Z = OPT (i -1,j -1) o x;
2. If x; # yj and zy # x;: then Z = OPT (i - 1,j)
3. If x; # yj and zi # yj: then Z = OPT (i,j - 1)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025

7/25

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 8/25

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z # a.

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 8/25

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 8/25

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zy_1 # OPT(i-1,j-1).

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 8/25

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zy_1 # OPT(i-1,j-1).
= 3IW LCS of Xj_1, Yj_1 of length > k-1 = >k
= (W, a) common subsequence of X;, Y;j of length > k
» Contradiction to Z being LCS of X; and Y; Ol

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 8/25

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 9/25

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)

Proof.
Since zx # x;, Z a common subsequence of X;_1, ¥; = |Z|<|OPT (i - 1,j)|

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 9/25

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)

Proof.
Since z # x;, Z a common subsequence of X;_1, Y; = |Z| <|OPT (i - 1,j)|

OPT (i - 1,j) a common subsequence of Xj, Y;
= |OPT(i-1,j)|<|OPT(i,j)|=|Z| (def of OPT (i,j) and Z)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 9/25

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)

Proof.
Since z # x;, Z a common subsequence of X;_1, Y; = |Z| <|OPT (i - 1,j)|

OPT (i - 1,j) a common subsequence of Xj, Y;
= |OPT(i-1,j)|<|OPT(i,j)|=|Z| (def of OPT (i,j) and Z)

—s Z=0PT(i-1,j) O

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 9/25

Optimal Substructure: Proof (1l1)

Case 3: If x; # yj and z, # yj then Z = OPT (i,j-1)

Proof.
Symmetric to Case 2. DJ

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 10/25

Structure Corollary

Corollary
Z ifi=0orj=0,
OPT(i,j) ={OPT(i-1,j-1)ox; ifi,j>0 and x; = y;
max(OPT (i,j-1),0PT(i-1,j)) ifi,j>0 and x; # y;

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 11/25

Structure Corollary

Corollary
@ ifi=0orj=0,
OPT(i,j) ={OPT(i-1,j-1)ox; ifi,j>0 and x; = y;
max(OPT (i,j-1),0PT(i-1,j)) ifi,j>0 and x; # y;

Gives obvious recursive algorithm
» Can take exponential time (good exercise at home!)

Dynamic Programming!
» Top-Down: are problems getting “smaller”? What does “smaller” mean?
» Bottom-Up: two-dimensional table! What order to fill it in?

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025

11/25

Dynamic Programming Algorithm

LCS(X,Y) {
for(i =0 to m) M[i,0] = 0;
for(j = 0 to n) M[0,j] =0;
for(i =1 to m) {
for(j=1ton) {

if(x; = yj)
Mli,jl=1+M[i-1,j-1];
else
} M['a.l] = max(M[i,j— l]a M[i_ la.i]);

}

return M[m, n];

}

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 12 /25

Dynamic Programming Algorithm

LCS(X,Y) {
for(i =0 to m) M[i,0] = 0;
for(j = 0 to n) M[0,j] =0;
for(i =1 to m) {
for(j=1ton) {

if(xi = y;) N

M[,’JJ] =1+M[i-1,j-1]; Running Time: O(mn)
else
\ Mli,j] = max(M[i,j - 1], M[i - 1,j]);

}

return M[m, n];

}

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 12 /25

Correctness

Theorem
M[iaj]=|OPT(ivj)| J

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 13 /25

Correctness

Theorem
M[ia.i] = |OPT(i7.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)

Jessica Sorrell Lecture 13: Dynamic Programming Il

October 7, 2025

13/25

Correctness

Theorem
M[ia.i] = |OPT(i7.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)

Base Case: i +j=0 = i=j=0 = M]Ji,j]=0=|0PT(i,j)|

Jessica Sorrell

Lecture 13: Dynamic Programming Il October 7, 2025 13 /25

Correctness

Theorem
M[ia.i] = |OPT(ia.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M[i,j]=0=|OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0o0rj=0, then M[i,j]=0=|OPT(i,j)|

Jessica Sorrell Lecture 13: Dynamic Programming Il

October 7, 2025

13/25

Correctness
Theorem

M[ia.i] = |OPT(ia.i)|
Proof.

Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M[i,j]=0=|OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0o0rj=0, then M[i,j]=0=|OPT(i,j)|
2. If x; = yj, then M[i,jl=1+M[i-1,j-1]=1+|OPT(i-1,j-1)|=|OPT(i,j)|

Jessica Sorrell

Lecture 13: Dynamic Programming Il October 7, 2025 13/25

Correctness

Theorem
M[ia.i] = |OPT(ia.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M[i,j]=0=|OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0o0rj=0, then M[i,j]=0=|OPT(i,j)|

2. If x; = yj, then M[i,j]=1+M[i-1,j-1]=1+|OPT(i-1,j-1)|=|OPT(i,j)|
3. If x; # yj, then

M['a./] = max(M[i,j— 1]7 M['_ laj])

= max(|OPT(ia.i- l)la |OPT(i_ laf)l)
=|OPT (i, j)|

Lecture 13: Dynamic Programming Il

(def of algorithm)
(induction)
(structure thm/corollary)

October 7, 2025 13 /25

Jessica Sorrell

Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 14.4

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 14 /25

Optimal Binary Search Trees

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 15/25

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < kp <-+- < ky,
» For each i € [n], probability p; that we search for k; (so ¥, pj = 1)

What's the best binary search tree for these keys and frequencies?

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 16 /25

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < kp <-+- < ky,
» For each i € [n], probability p; that we search for k; (so ¥, pj = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is deptht(k;) +1 (say depth of root = 0)
== E[cost of search in T]= X" | pj(deptht(k;) +1)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025

16 /25

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < kp <-+- < ky,
» For each i € [n], probability p; that we search for k; (so ¥, pj = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is deptht(k;) +1 (say depth of root = 0)
== E[cost of search in T]= X" | pj(deptht(k;) +1)

Definition: ¢(T) = X, pi(deptht(k;) +1)

Problem: Find search tree T minimizing cost.

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025

16 /25

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 17 /25

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... pn, but with p; - pj,1 extremely small (say 1/2")

Jessica Sorrell

AN

®

Lecture 13: Dynamic Programming Il

October 7, 2025

17/25

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... pn, but with p; - pj,1 extremely small (say 1/2")

Jessica Sorrell

AN

®

E|[cost of search in T] > Q(n)

Lecture 13: Dynamic Programming Il

October 7, 2025

17/25

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... pn, but with p; - pj,1 extremely small (say 1/2")

L
®\ E[cost of search in T] > Q(n)
C
@\ Balanced search tree: E[cost] < O(log n)

AN

®

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 17 /25

Intuition

Suppose root is k,. What does optimal tree look like?

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 18 /25

Intuition

Suppose root is k,. What does optimal tree look like?

®

OF £ Orr £
“(l,) kr'is (l('l') 7 ko.}

Jessica Sorrell Lecture 13: Dynamic Programming Il

October 7, 2025

18/25

Subproblems

Definition
Let OPT (i,j) with i < j be optimal tree for keys {kj, kis1,...,kj}: tree T minimizing
c(T) = Zi,:,- Pa(deptht(ka) +1)

By convention, if i > j then OPT (i,j) empty
So overall goal is to find OPT (1, n).

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 19/25

Subproblems

Definition
Let OPT (i,j) with i < j be optimal tree for keys {kj, kis1,...,kj}: tree T minimizing
c(T) = Zi,:,- Pa(deptht(ka) +1)

By convention, if i > j then OPT (i,j) empty
So overall goal is to find OPT (1, n).

Theorem (Optimal Substructure)

Let k, be the root of OPT (i,j). Then the left subtree of OPT (i,j) is OPT (i,r-1), and
the right subtree of OPT (i,j) is OPT (r +1,j).

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 19 /25

Proof Sketch of Optimal Substructure

Definitions:

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

» Suppose for contradiction Tp + OPT (i,r-1), let T"= OPT (i,r-1)
= ¢(T') <c(T.) (def of OPT (i,r-1))

» Let T be tree get by replacing T, with T’

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 20/25

Proof Sketch of Optimal Substructure

Definitions:

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

» Suppose for contradiction Tp + OPT (i,r-1), let T"= OPT (i,r-1)
= ¢(T') <c(T.) (def of OPT (i,r-1))

» Let T be tree get by replacing T, with T’

Whole bunch of math (see lecture notes): get that ¢(T) < ¢(T)
Contradicts T = OPT (i,j)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 20/25

Proof Sketch of Optimal Substructure

Definitions:

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

» Suppose for contradiction Tp + OPT (i,r-1), let T"= OPT (i,r-1)
= ¢(T') <c(T.) (def of OPT (i,r-1))

» Let T be tree get by replacing T, with T’

Whole bunch of math (see lecture notes): get that ¢(T) < ¢(T)
Contradicts T = OPT (i,j)

Symmetric argument works for Tg = OPT (r +1,j)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025

20/25

Cost Corollary
Corollary

c(OPT(i,j)) = ¥)_. pa+minic,¢;(c(OPT (i, r-1)) + c(OPT (r + 1,j)))

Let k, be root of OPT (i,j)

c(OPT(i,j)) = 3" pa(depthopr i jy (ka) +1)

a=i
r-1 J

= Y (pa(depthopr(i,_1)(ka) +2)) +pr+ Y. pa(depthopr(,.1,j)(ka) +2)
a=i a=r+1
Jj r-1 j

=Y Pa+ Y. (Pa(depthopr(ir-1)(ka) +1)) + Y. pa(depthopr(r.1j)(ka) +1)
a=i a=i a=r+1l

= ipa+ c(OPT (i,r-1)) + c(OPT(r + 1,j)).

a=i

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 21/25

Cost Corollary
Corollary

c(OPT(i,j)) = ¥)_. pa+minic,¢;(c(OPT (i, r-1)) + c(OPT (r + 1,j)))

Let k, be root of OPT (i,j)

c(OPT(i,j)) = 3" pa(depthopr i jy (ka) +1)

a=i
r-1 J

= Y (pa(depthopr(i,_1)(ka) +2)) +pr+ Y. pa(depthopr(,.1,j)(ka) +2)
a=i a=r+1
Jj r-1 j

=Y Pa+ Y. (Pa(depthopr(ir-1)(ka) +1)) + Y. pa(depthopr(r.1j)(ka) +1)
a=i a=i a=r+1l

= ipa+ c(OPT (i,r-1)) + c(OPT(r + 1,j)).

a=i

Same logic holds for any possible root == take min
Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 21/25

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 22 /25

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller?

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 22 /25

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every
recursive call.

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 22 /25

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every
recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j -i.

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 22 /25

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every
recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j -i.
» Base case: if j—i <0 then M[i,j] = OPT(i,j)=0

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025

22/25

Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min;S,gj(Zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every

recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j -i.
» Base case: if j—i <0 then M[i,j] = OPT(i,j) =
» Inductive step:

M([i,j] = min (Zpa+M[l r- 1]+M[r+1,1]) (alg def)
isr<j
= min (Z pa+c(OPT(i,r-1))+c(OPT(r+ 1,1))) (induction)
i<r<j
=c(OPT(i,j)) (cost corollary)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 22 /25

Algorithm: Bottom-up
What order to fill the table in?
» Obvious approach: for(i =1 to n-1) for(j =i +1 to n) Doesn't work!

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 23 /25

Algorithm: Bottom-up

What order to fill the table in?
» Obvious approach: for(i =1 to n-1) for(j =i +1 to n) Doesn't work!
» Take hint from induction: j - i

OBST {
Set M[i,j] =0 for all j > i;
Set M[i,i] = p; for all i
forfl=1ton-1) {
for(i=1ton-2¢) {
j=i+#t
M[i,j] = minc,<; (Z{k’.pa +M[i,r-1]+M[r+ 1,j]);
}
}
return M[1, n];
}

Jessica Sorrell Lecture 13: Dynamic Programming Il

October 7, 2025

23 /25

Analysis

Correctness: same as top-down

Running Time:

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 24 /25

Analysis

Correctness: same as top-down

Running Time:
» 4 table entries:

Jessica Sorrell

Lecture 13: Dynamic Programming Il

October 7, 2025

24 /25

Analysis

Correctness: same as top-down

Running Time:
> # table entries: O(n?)

Jessica Sorrell

Lecture 13: Dynamic Programming Il

October 7, 2025

24 /25

Analysis

Correctness: same as top-down

Running Time:
> # table entries: O(n?)
» Time to compute table entry M[i,j]:

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 24 /25

Analysis

Correctness: same as top-down

Running Time:
> # table entries: O(n?)
» Time to compute table entry M[i,j]: O(j-i) = O(n)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 24 /25

Analysis

Correctness: same as top-down

Running Time:

> # table entries: O(n?)

» Time to compute table entry M[i,j]: O(j-i) = O(n)
Total running time: O(n?)

Jessica Sorrell Lecture 13: Dynamic Programming Il

October 7, 2025

24 /25

Bonus Content

Obvious Question: Robustness.

» What if given distribution is wrong?

Want algorithm that gives a solution with cost a function of true optimal cost, “distance”
between given distribution and true distribution.

Dinitz, Im, Lavastida, Moseley, Niaparast, Vassilvitskii. Binary Search Trees with
Distributional Predictions. NeurlPS '24

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 25/25

