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Introduction

Today: two more examples of dynamic programming
» Longest Common Subsequence (strings)
» Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)
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Longest Common Subsequence

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 3/25



Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a- z}, etc.)

Definition: A sequence Z = (zy,...,2x) is a subsequence of X = (x1,...,Xm) if there
exists a strictly increasing sequence (i1, fp, . . . , ix) such that xj; = zj forall j € {1,2,...,k}.

Example: (B, C, D, B) is a subsequence of (A,B,C,B,D, A, B)

> Allowed to skip positions, unlike substring!
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Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a- z}, etc.)

Definition: A sequence Z = (zy,...,2x) is a subsequence of X = (x1,...,Xm) if there
exists a strictly increasing sequence (i1, fp, . . . , ix) such that xj; = zj forall j € {1,2,...,k}.

Example: (B, C, D, B) is a subsequence of (A,B,C,B,D, A, B)

> Allowed to skip positions, unlike substring!

Definition: In Longest Common Subsequence problem (LCS) we are given two strings
X =(x1y.--5%m) and Y = (y1,...¥n). Need to find the longest Z which is a subsequence
of both X and Y.
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Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!
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Subproblems
First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> X = (X1,X2,...,X,') (SO X =Xm)
> Y_l = (.YhyZa"'vyj) (SO Y = Yn)
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Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> X = (X],Xz,...,X,') (SO X =Xm)
S Y= (Y2 ) (50 Y = Vo)

Definition: Let OPT (i, j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT (m, n)

» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation
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Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> X = (X],Xz,...,X,') (SO X =Xm)
S Y= (Y2 ) (50 Y = Vo)

Definition: Let OPT (i, j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT (m, n)
» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
L If x; = yj:
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. Ifxj=yj: then zx = xj=yj and Z = OPT (i -1,j-1) o x;
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. Ifxj=yj: then zx = xj=yj and Z = OPT (i -1,j-1) o x;
2. If xj # yj and z\ # x;:
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).

1. Ifx;=yj: then zx = x; =yj and Z = OPT (i -1,j-1) o x;
2. Ifxj # yj and z # x;j: then Z = OPT (i - 1,j)
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. Ifx;=yj: then zx = x; =yj and Z = OPT (i -1,j-1) o x;
2. Ifxj # yj and z # x;j: then Z = OPT (i - 1,j)

3. If x; # yj and z\ # y;j:
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. Ifx;=yj: then zx = x; =yj and Z = OPT (i -1,j-1) o x;
2. Ifxj # yj and z # x;j: then Z = OPT (i - 1,j)

3. Ifxj # yj and zi # yj: then Z = OPT (i,j - 1)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 6/25



Optimal Substructure

1. Let X; = ABCHIJ, Y; = ABDFGHJ, so Z = ABHJ
2. Let X; = ABCDHI, Y; = ABDFGH, so Z = ABDH
3. Let Xj = ABCDEF, Y; = ABDFGHJ, so Z = ABDF

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y (so Z = OPT (i, j)).
1. Ifxj=yj: then zx = x; =yj and Z = OPT (i -1,j -1) o x;
2. If x; # yj and zy # x;: then Z = OPT (i - 1,j)
3. If x; # yj and zi # yj: then Z = OPT (i,j - 1)
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Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.
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Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z # a.
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Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction
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Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zy_1 # OPT(i-1,j-1).
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Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; = yj and Z_1 = OPT(i-1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zy_1 # OPT(i-1,j-1).
= 3IW LCS of Xj_1, Yj_1 of length > k-1 = >k
= (W, a) common subsequence of X;, Y;j of length > k
» Contradiction to Z being LCS of X; and Y; Ol
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Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)
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Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)

Proof.
Since zx # x;, Z a common subsequence of X;_1, ¥; = |Z|<|OPT (i - 1,j)|
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Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)

Proof.
Since z # x;, Z a common subsequence of X;_1, Y; = |Z| <|OPT (i - 1,j)|

OPT (i - 1,j) a common subsequence of Xj, Y;
= |OPT(i-1,j)|<|OPT(i,j)|=|Z| (def of OPT (i,j) and Z)
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Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z # x; then Z = OPT (i -1,j)

Proof.
Since z # x;, Z a common subsequence of X;_1, Y; = |Z| <|OPT (i - 1,j)|

OPT (i - 1,j) a common subsequence of Xj, Y;
= |OPT(i-1,j)|<|OPT(i,j)|=|Z| (def of OPT (i,j) and Z)

—s Z=0PT(i-1,j) O
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Optimal Substructure: Proof (1l1)

Case 3: If x; # yj and z, # yj then Z = OPT (i,j-1)

Proof.
Symmetric to Case 2. DJ
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Structure Corollary

Corollary
Z ifi=0orj=0,
OPT(i,j) ={OPT(i-1,j-1)ox; ifi,j>0 and x; = y;
max(OPT (i,j-1),0PT(i-1,j)) ifi,j>0 and x; # y;
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Structure Corollary

Corollary
@ ifi=0orj=0,
OPT(i,j) ={OPT(i-1,j-1)ox; ifi,j>0 and x; = y;
max(OPT (i,j-1),0PT(i-1,j)) ifi,j>0 and x; # y;

Gives obvious recursive algorithm
» Can take exponential time (good exercise at home!)

Dynamic Programming!
» Top-Down: are problems getting “smaller”? What does “smaller” mean?
» Bottom-Up: two-dimensional table! What order to fill it in?
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Dynamic Programming Algorithm

LCS(X,Y) {
for(i =0 to m) M[i,0] = 0;
for(j = 0 to n) M[0,j] =0;
for(i =1 to m) {
for(j=1ton) {

if(x; = yj)
Mli,jl=1+M[i-1,j-1];
else
} M['a.l] = max(M[i,j— l]a M[i_ la.i]);

}

return M[m, n];

}
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Dynamic Programming Algorithm

LCS(X,Y) {
for(i =0 to m) M[i,0] = 0;
for(j = 0 to n) M[0,j] =0;
for(i =1 to m) {
for(j=1ton) {

if(xi = y;) N

M[,’JJ] =1+M[i-1,j-1]; Running Time: O(mn)
else
\ Mli,j] = max(M[i,j - 1], M[i - 1,j]);

}

return M[m, n];

}
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Correctness

Theorem
M[iaj]=|OPT(ivj)| J
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Correctness

Theorem
M[ia.i] = |OPT(i7.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)

Jessica Sorrell Lecture 13: Dynamic Programming Il

October 7, 2025

13/25



Correctness

Theorem
M[ia.i] = |OPT(i7.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)

Base Case: i +j=0 = i=j=0 = M]Ji,j]=0=|0PT(i,j)|

Jessica Sorrell
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Correctness

Theorem
M[ia.i] = |OPT(ia.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M[i,j]=0=|OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0o0rj=0, then M[i,j]=0=|OPT(i,j)|
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Correctness
Theorem

M[ia.i] = |OPT(ia.i)|
Proof.

Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M[i,j]=0=|OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0o0rj=0, then M[i,j]=0=|OPT(i,j)|
2. If x; = yj, then M[i,jl=1+M[i-1,j-1]=1+|OPT(i-1,j-1)|=|OPT(i,j)|

Jessica Sorrell
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Correctness

Theorem
M[ia.i] = |OPT(ia.i)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M[i,j]=0=|OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0o0rj=0, then M[i,j]=0=|OPT(i,j)|

2. If x; = yj, then M[i,j]=1+M[i-1,j-1]=1+|OPT(i-1,j-1)|=|OPT(i,j)|
3. If x; # yj, then

M['a./] = max(M[i,j— 1]7 M['_ laj])

= max(|OPT(ia.i- l)la |OPT(i_ laf)l)
=|OPT (i, j)|

Lecture 13: Dynamic Programming Il
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(structure thm/corollary)
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Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 14.4
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Optimal Binary Search Trees
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Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < kp <-+- < ky,
» For each i € [n], probability p; that we search for k; (so ¥, pj = 1)

What's the best binary search tree for these keys and frequencies?

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 16 /25



Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < kp <-+- < ky,
» For each i € [n], probability p; that we search for k; (so ¥, pj = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is deptht(k;) +1 (say depth of root = 0)
== E[cost of search in T]= X" | pj(deptht(k;) +1)
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Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < kp <-+- < ky,
» For each i € [n], probability p; that we search for k; (so ¥, pj = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is deptht(k;) +1 (say depth of root = 0)
== E[cost of search in T]= X" | pj(deptht(k;) +1)

Definition: ¢(T) = X, pi(deptht(k;) +1)

Problem: Find search tree T minimizing cost.
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Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?
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Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... pn, but with p; - pj,1 extremely small (say 1/2")

Jessica Sorrell
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Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... pn, but with p; - pj,1 extremely small (say 1/2")

Jessica Sorrell
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E|[cost of search in T] > Q(n)
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Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... pn, but with p; - pj,1 extremely small (say 1/2")

L
®\ E[cost of search in T] > Q(n)
C
@\ Balanced search tree: E[cost] < O(log n)

AN

®
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Intuition

Suppose root is k,. What does optimal tree look like?
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Intuition

Suppose root is k,. What does optimal tree look like?

®

OF £ Orr £
“(l, ) kr'is (l('l') 7 ko.}
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Subproblems

Definition
Let OPT (i,j) with i < j be optimal tree for keys {kj, kis1,...,kj}: tree T minimizing
c(T) = Zi,:,- Pa(deptht(ka) +1)

By convention, if i > j then OPT (i,j) empty
So overall goal is to find OPT (1, n).
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Subproblems

Definition
Let OPT (i,j) with i < j be optimal tree for keys {kj, kis1,...,kj}: tree T minimizing
c(T) = Zi,:,- Pa(deptht(ka) +1)

By convention, if i > j then OPT (i,j) empty
So overall goal is to find OPT (1, n).

Theorem (Optimal Substructure)

Let k, be the root of OPT (i,j). Then the left subtree of OPT (i,j) is OPT (i,r-1), and
the right subtree of OPT (i,j) is OPT (r +1,j).
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Proof Sketch of Optimal Substructure

Definitions:

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

» Suppose for contradiction Tp + OPT (i,r-1), let T"= OPT (i,r-1)
= ¢(T') <c(T.) (def of OPT (i,r-1))

» Let T be tree get by replacing T, with T’

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 20/25



Proof Sketch of Optimal Substructure

Definitions:

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

» Suppose for contradiction Tp + OPT (i,r-1), let T"= OPT (i,r-1)
= ¢(T') <c(T.) (def of OPT (i,r-1))

» Let T be tree get by replacing T, with T’

Whole bunch of math (see lecture notes): get that ¢(T) < ¢(T)
Contradicts T = OPT (i,j)

Jessica Sorrell Lecture 13: Dynamic Programming Il October 7, 2025 20/25



Proof Sketch of Optimal Substructure

Definitions:

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

» Suppose for contradiction Tp + OPT (i,r-1), let T"= OPT (i,r-1)
= ¢(T') <c(T.) (def of OPT (i,r-1))

» Let T be tree get by replacing T, with T’

Whole bunch of math (see lecture notes): get that ¢(T) < ¢(T)
Contradicts T = OPT (i,j)

Symmetric argument works for Tg = OPT (r +1,j)
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Cost Corollary
Corollary

c(OPT(i,j)) = ¥)_. pa+minic,¢;(c(OPT (i, r-1)) + c(OPT (r + 1,j)))

Let k, be root of OPT (i,j)

c(OPT(i,j)) = 3" pa(depthopr i jy (ka) +1)

a=i
r-1 J

= Y (pa(depthopr(i,_1)(ka) +2)) +pr+ Y. pa(depthopr(,.1,j)(ka) +2)
a=i a=r+1
Jj r-1 j

=Y Pa+ Y. (Pa(depthopr(ir-1)(ka) +1)) + Y. pa(depthopr(r.1j)(ka) +1)
a=i a=i a=r+1l

= ipa+ c(OPT (i,r-1)) + c(OPT(r + 1,j)).

a=i
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Cost Corollary
Corollary

c(OPT(i,j)) = ¥)_. pa+minic,¢;(c(OPT (i, r-1)) + c(OPT (r + 1,j)))

Let k, be root of OPT (i,j)

c(OPT(i,j)) = 3" pa(depthopr i jy (ka) +1)

a=i
r-1 J

= Y (pa(depthopr(i,_1)(ka) +2)) +pr+ Y. pa(depthopr(,.1,j)(ka) +2)
a=i a=r+1
Jj r-1 j

=Y Pa+ Y. (Pa(depthopr(ir-1)(ka) +1)) + Y. pa(depthopr(r.1j)(ka) +1)
a=i a=i a=r+1l

= ipa+ c(OPT (i,r-1)) + c(OPT(r + 1,j)).

a=i

Same logic holds for any possible root == take min
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Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j
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Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller?
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Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every
recursive call.
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Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every
recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j -i.
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Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min,-s,gj(zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every
recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j -i.
» Base case: if j—i <0 then M[i,j] = OPT(i,j)=0
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Algorithm
Fill in table M:

MIij] 0 if1>j
ij]= min;S,gj(Zi=,,pa+M[i,r—1]+M[r+1,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j —i decreases in every

recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j -i.
» Base case: if j—i <0 then M[i,j] = OPT(i,j) =
» Inductive step:

M([i,j] = min (Zpa+M[l r- 1]+M[r+1,1]) (alg def)
isr<j
= min (Z pa+c(OPT(i,r-1))+c(OPT(r+ 1,1))) (induction)
i<r<j
=c(OPT(i,j)) (cost corollary)
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Algorithm: Bottom-up
What order to fill the table in?
» Obvious approach: for(i =1 to n-1) for(j =i +1 to n) Doesn't work!
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Algorithm: Bottom-up

What order to fill the table in?
» Obvious approach: for(i =1 to n-1) for(j =i +1 to n) Doesn't work!
» Take hint from induction: j - i

OBST {
Set M[i,j] =0 for all j > i;
Set M[i,i] = p; for all i
forfl=1ton-1) {
for(i=1ton-2¢) {
j=i+#t
M[i,j] = minc,<; (Z{k’.pa +M[i,r-1]+M[r+ 1,j]);
}
}
return M[1, n];
}
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Analysis

Correctness: same as top-down

Running Time:
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Analysis

Correctness: same as top-down

Running Time:

> # table entries: O(n?)

» Time to compute table entry M[i,j]: O(j-i) = O(n)
Total running time: O(n?)
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Bonus Content

Obvious Question: Robustness.

» What if given distribution is wrong?

Want algorithm that gives a solution with cost a function of true optimal cost, “distance”
between given distribution and true distribution.

Dinitz, Im, Lavastida, Moseley, Niaparast, Vassilvitskii. Binary Search Trees with
Distributional Predictions. NeurlPS '24
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