Lecture 13: Basic Graph Algorithms

Michael Dinitz

October 8, 2024 601.433/633 Introduction to Algorithms

Introduction

Next 3-4 weeks: graphs!

- Super important abstractions, used all over the place in CS
- Most of my research is in graph algorithms (particularly when graph represents computer/communication network)
- Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, possibly one or two new

Basic Definitions

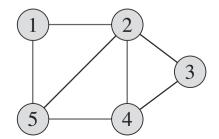
Definition

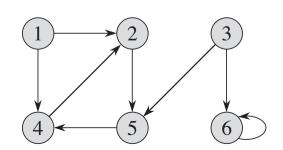
A graph G = (V, E) is a pair where V is a set and $E \subseteq {V \choose 2}$ (unordered pairs) or $E \subseteq V \times V$ (ordered pairs).

Notation:

- Elements of V are called vertices or nodes
- ▶ Elements of *E* are called *edges* or *arcs*.
- ▶ If $E \subseteq {V \choose 2}$ then graph is *undirected*, if $E \subseteq V \times V$ graph is *directed*

- |V| = n and |E| = m (usually)
- ► So "size of input" = n + m





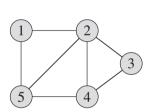
Representations

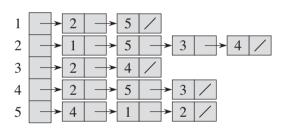
Adjacency List:

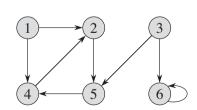
- Array A of length n
- A[v] is linked list of vertices adjacent to
 v (edge from u to v)

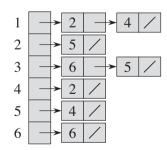
$$A \in \{0,1\}^{n \times n}$$

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$









		1	2	3	4	5
	1	0	1	0	0	1
	2	1	0	1	1	1
	3	0	1	0	1	0
	4	0	1	1	0	1
	5	1	1	0	1	0
	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5 6	0	0	0	1	0	0
6	0	0	0	0	0	1

Adjacency List:

Pros:

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:

Adjacency List:

- Pros:
 - O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

Adjacency List:

- Pros:
 - O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

Adjacency Matrix:

Pros:

Adjacency List:

- Pros:
 - O(n+m) space
 - Can iterate through edges adjacent to v
 very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

- Pros:
 - Can check if e = (u, v) an edge in O(1) time

Adjacency List:

- Pros:
 - O(n+m) space
 - Can iterate through edges adjacent to v
 very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:

Adjacency List:

- Pros:
 - O(n+m) space
 - Can iterate through edges adjacent to v
 very efficiently
- Cons:
 - Hard to check of an edge exists: O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:
 - ▶ Takes $\Theta(n^2)$ space: if m small, lots wasted!
 - Iterating through edges incident on v takes time $\Theta(n)$, even if d(v) small.

Adjacency List:

- Pros:
 - O(n+m) space
 - Can iterate through edges adjacent to v
 very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

This class: adjacency list unless otherwise specified.

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:
 - ▶ Takes $\Theta(n^2)$ space: if m small, lots wasted!
 - Iterating through edges incident on v takes time $\Theta(n)$, even if d(v) small.

Adjacency List:

- Pros:
 - O(n+m) space
 - Can iterate through edges adjacent to v
 very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:
 - ▶ Takes $\Theta(n^2)$ space: if m small, lots wasted!
 - Iterating through edges incident on v takes time $\Theta(n)$, even if d(v) small.

Adjacency List:

- Pros:
 - O(n+m) space
 - Can iterate through edges adjacent to v
 very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

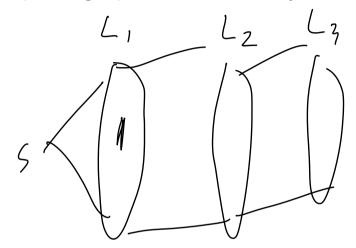
This class: adjacency list unless otherwise specified.

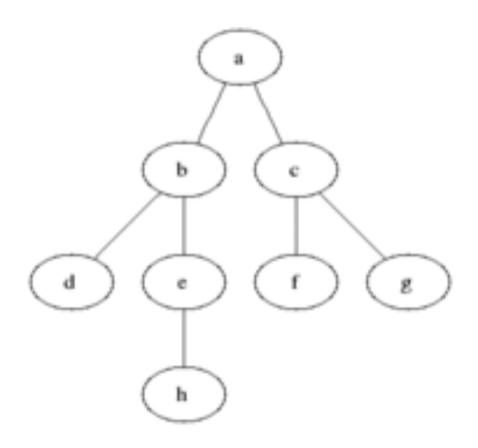
Any way to improve these?

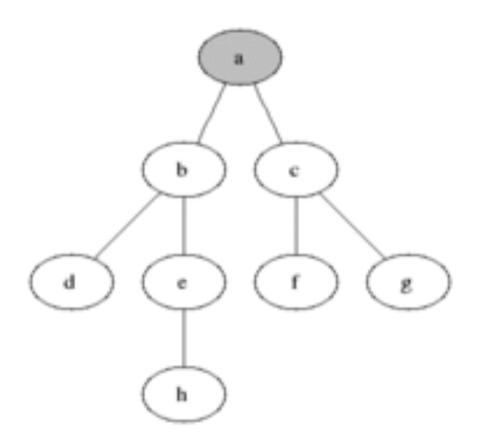
- Replace adjacency list with adjacency structure: Red-black tree, hash table, etc.
- Not traditional, doesn't gain us much, and more complicated. But better!

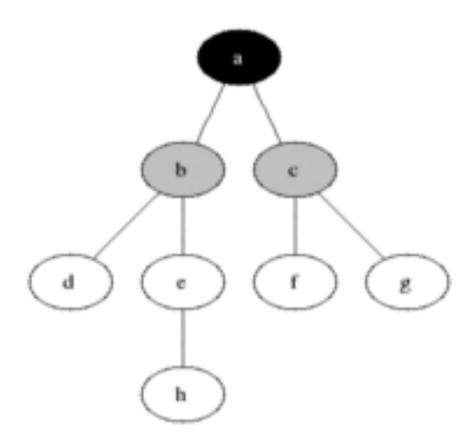
- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:
 - ▶ Takes $\Theta(n^2)$ space: if m small, lots wasted!
 - Iterating through edges incident on v takes time $\Theta(n)$, even if d(v) small.

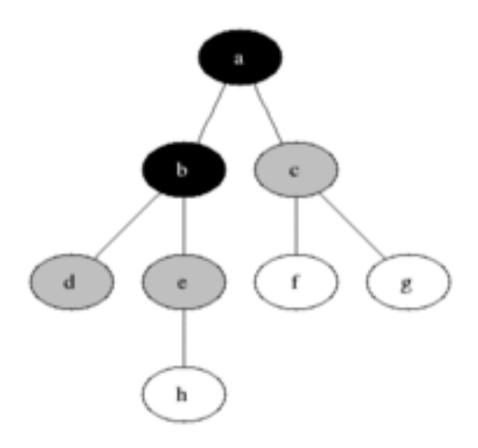
Breadth-First Search (BFS)

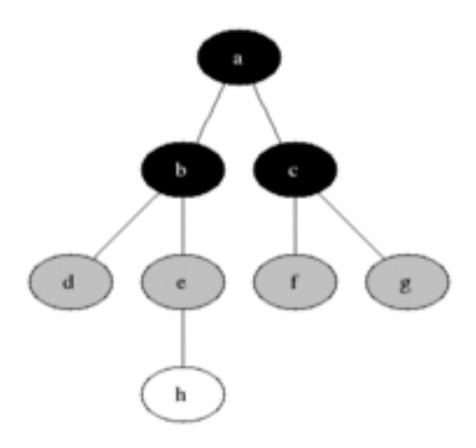


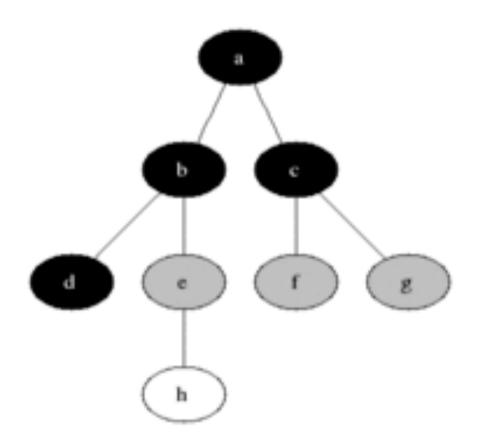


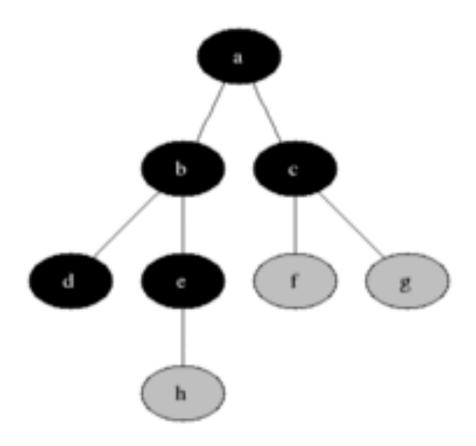


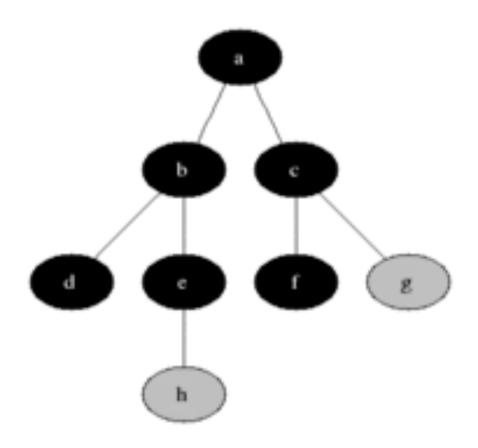


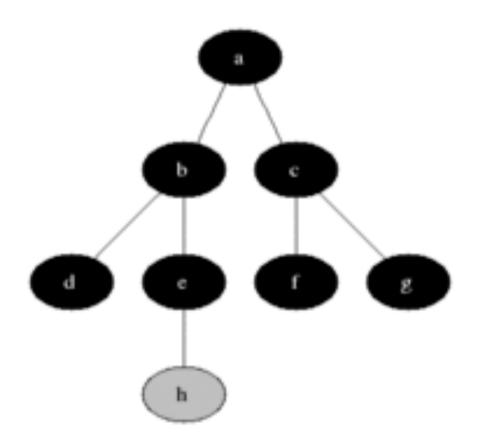


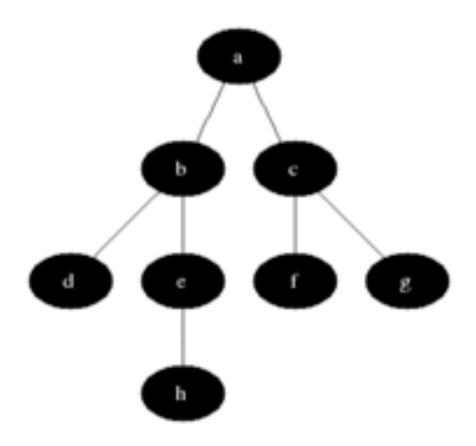












Idea: explore with a queue (FIFO)

```
\mathsf{BFS}(\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E}), \boldsymbol{s}) \; \{
    Set mark(s) = True;
    Set mark(v) = False for all v \in V \setminus \{s\};
    Enqueue(s);
   while(queue not empty) {
        v = Dequeue();
       forall neighbors u of v {
            if(mark(u) == False) {
               mark(u) = True;
               Enqueue(u);
```

Idea: explore with a queue (FIFO)

```
\mathsf{BFS}(\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E}), \boldsymbol{s}) \; \{
    Set mark(s) = True;
    Set mark(v) = False for all v \in V \setminus \{s\};
    Enqueue(s);
   while(queue not empty) {
        v = Dequeue();
       forall neighbors u of v {
            if(mark(u) == False) {
               mark(u) = True;
               Enqueue(u);
```

Running Time:

Idea: explore with a queue (FIFO)

```
\mathsf{BFS}(\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E}), \boldsymbol{s}) \; \{
    Set mark(s) = True;
    Set mark(v) = False for all v \in V \setminus \{s\};
    Enqueue(s);
   while(queue not empty) {
        v = Dequeue();
       forall neighbors u of v {
            if(mark(u) == False) {
               mark(u) = True;
               Enqueue(u);
```

Running Time: O(n+m)

Idea: explore with a queue (FIFO)

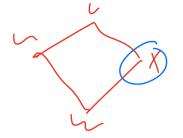
```
\mathsf{BFS}(\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E}), \boldsymbol{s}) \; \{
   Set mark(s) = True;
    Set mark(v) = False for all v \in V \setminus \{s\};
    Enqueue(s);
   while(queue not empty) {
        v = Dequeue();
       forall neighbors u of v {
            if(mark(u) == False) {
               mark(u) = True;
                Enqueue(u);
```

Running Time: O(n+m)

- ightharpoonup O(n) for initialization
- \triangleright O(m) for main while loop
 - Examine every edge twice: when each endpoint dequeued
 - Or (equivalent): Adjacency list scanned only when vertex dequeued

Idea: explore with a queue (FIFO)

```
\mathsf{BFS}(\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E}), \boldsymbol{s}) \; \{
   Set mark(s) = True;
    Set mark(v) = False for all v \in V \setminus \{s\};
    Enqueue(s);
   while(queue not empty) {
        v = Dequeue();
       forall neighbors u of v {
            if(mark(u) == False) {
               mark(u) = True;
               Enqueue(u);
```



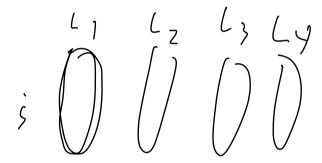
Running Time: O(n+m)

- ightharpoonup O(n) for initialization
- ightharpoonup O(m) for main while loop
 - Examine every edge twice: when each endpoint dequeued
 - Or (equivalent): Adjacency list scanned only when vertex dequeued

Note: edges that cause a node to be enqueued form a tree!

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes



Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let $L_i = \{v : d(s, v) = i\}$. Claim that layer i of BFS tree T equals L_i .

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let $L_i = \{v : d(s, v) = i\}$. Claim that layer i of BFS tree T equals L_i . Induction on i.

▶ Base case: i = 0.

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let $L_i = \{v : d(s, v) = i\}$. Claim that layer i of BFS tree T equals L_i . Induction on i.

▶ Base case: i = 0. ✓

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let $L_i = \{v : d(s, v) = i\}$. Claim that layer i of BFS tree T equals L_i . Induction on i.

- ▶ Base case: i = 0. ✓
- ▶ Inductive step: consider i > 0, let $v \in L_i$.

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let $L_i = \{v : d(s, v) = i\}$. Claim that layer i of BFS tree T equals L_i . Induction on i.

- ▶ Base case: i = 0. ✓
- Inductive step: consider i > 0, let $v \in L_i$. Shortest s - v path ends with edge $\{u, v\}$ with $u \in L_{i-1}$.

5 1 4 0 6

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let $L_i = \{v : d(s, v) = i\}$. Claim that layer i of BFS tree T equals L_i . Induction on i.

- ▶ Base case: i = 0. ✓
- Inductive step: consider i > 0, let $v \in L_i$. Shortest s - v path ends with edge $\{u, v\}$ with $u \in L_{i-1}$. By induction, u in layer i - 1 of T

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let $L_i = \{v : d(s, v) = i\}$. Claim that layer i of BFS tree T equals L_i . Induction on i.

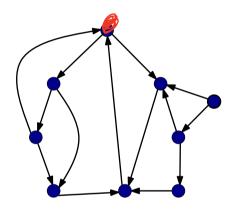
- ▶ Base case: i = 0. ✓
- Inductive step: consider i > 0, let $v \in L_i$. Shortest s - v path ends with edge $\{u, v\}$ with $u \in L_{i-1}$. By induction, u in layer i - 1 of T $\implies \{u, v\} \in T \implies v$ at layer i of T.

Depth-First Search (DFS)

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v \in V, mark(v) = False;

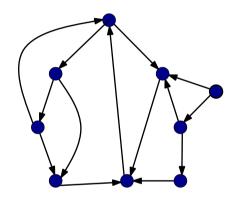
DFS(v) \{ \\ mark(v) = True; \\ for each edge <math>(v, u) \in A[v] \{ \\ if mark(u) == False \text{ then DFS}(u); \\ \}
```



Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v \in V, mark(v) = False;

DFS(v) \{ \\ mark(v) = True; \\ for each edge <math>(v, u) \in A[v] \{ \\ if mark(u) == False \text{ then DFS}(u); \\ \}
```

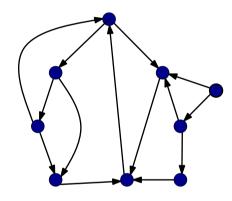


Running time:

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v \in V, mark(v) = False;

DFS(v) \{ \\ mark(v) = True; \\ for each edge <math>(v, u) \in A[v] \{ \\ if mark(u) == False \text{ then DFS}(u); \\ \}
```

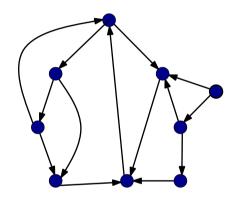


Running time: O(m+n)

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v \in V, mark(v) = False;

DFS(v) \{ \\ mark(v) = True; \\ for each edge <math>(v, u) \in A[v] \{ \\ if mark(u) == False \text{ then DFS}(u); \\ \}
}
```



Running time: O(m+n)

- \triangleright O(n) initialization
- Every edge considered at most twice

Definition: u is reachable from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When $DFS(\mathbf{v})$ terminates, it has visited (marked) all nodes that are reachable from \mathbf{v} .

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

Definition: u is reachable from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When $DFS(\mathbf{v})$ terminates, it has visited (marked) all nodes that are reachable from \mathbf{v} .

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

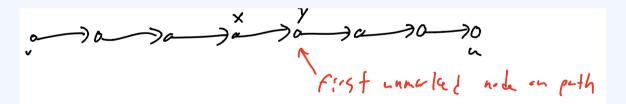
Definition: u is *reachable* from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When $DFS(\mathbf{v})$ terminates, it has visited (marked) all nodes that are reachable from \mathbf{v} .

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.



x is marked so DFS(x) must have been called

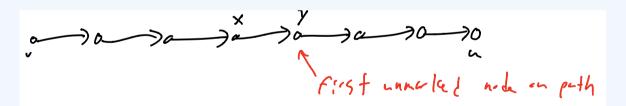
Definition: u is reachable from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When $DFS(\mathbf{v})$ terminates, it has visited (marked) all nodes that are reachable from \mathbf{v} .

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.



x is marked so DFS(x) must have been called $\implies y$ was either marked or DFS(y) called and it became marked.

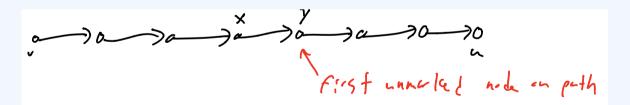
Definition: u is reachable from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When $DFS(\mathbf{v})$ terminates, it has visited (marked) all nodes that are reachable from \mathbf{v} .

Proof.

Suppose \boldsymbol{u} reachable from \boldsymbol{v} but not marked when DFS(\boldsymbol{v}) terminates.



x is marked so DFS(x) must have been called $\implies y$ was either marked or DFS(y) called and it became marked. Contradiction.

Graph variant

After DFS(\boldsymbol{v}), node marked if and only if reachable from \boldsymbol{v} .

Might want to continue until all nodes marked.

Timestamps

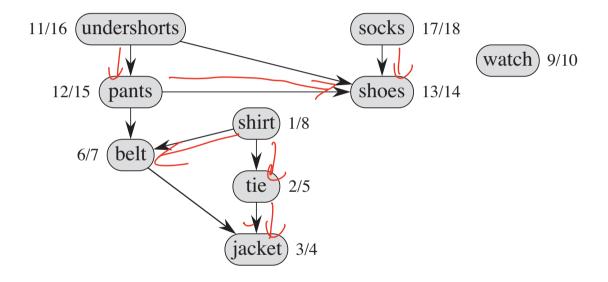
Explicitly keep track of "start" and "finishing" times

Replaces mark

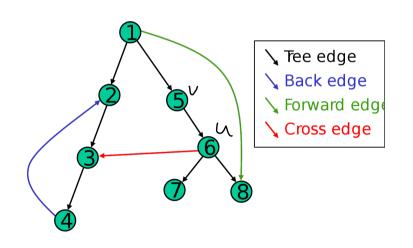
```
DFS(G) {
    t = 0:
   for all \mathbf{v} \in \mathbf{V} {
       start(v) = 0;
       finish(v) = 0;
   while \exists v \in V with start(v) = 0 {
       DFS(v);
```

```
DFS(v) {
  t = t + 1:
  start(v) = t;
  for each edge (v, u) \in A[v] {
     if start(u) == 0 then DFS(u);
   t=t+1;
   finish(v) = t;
```

Timestamp Example



DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

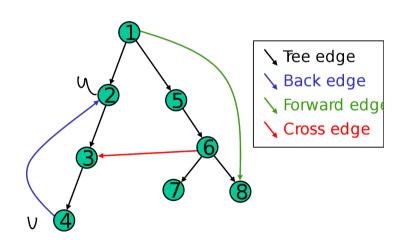


Forward Edges: (v, u) such that u descendent of v (includes tree edges)

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of v

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)



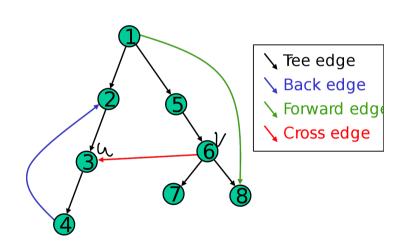
Forward Edges: (v, u) such that u descendent of v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of v

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

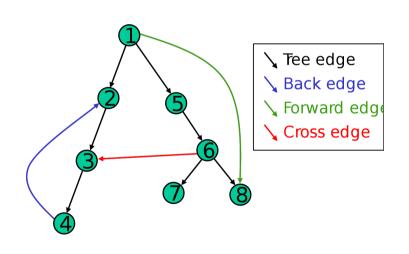


Forward Edges: (v, u) such that u descendent of v (includes tree edges) start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v, u) such that u an ancestor of v start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of v

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)



Forward Edges: (v, u) such that u descendent of v (includes tree edges) start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v, u) such that u an ancestor of v start(u) < start(v) < finish(v) < finish(u)

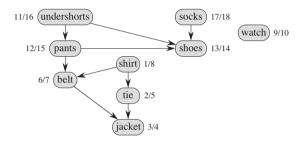
Cross Edges: (v, u) such that u neither a descendent nor an ancestor of v start(u) < finish(u) < start(v) < finish(v)

Topological Sort

Definitions

Definition

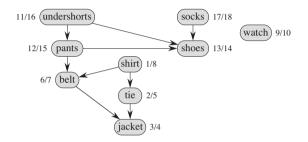
A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.



Definitions

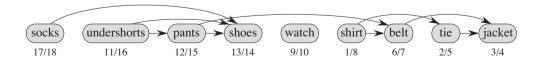
Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.



Definition

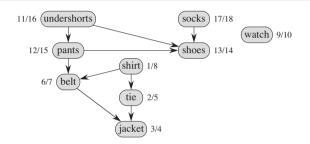
A topological sort v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form (v_i, v_i) with i < j.



Definitions

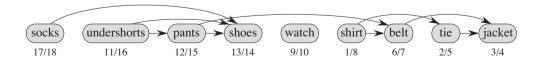
Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.



Definition

A topological sort v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form (v_i, v_i) with i < j.



Q: Can we always topological sort a DAG? How fast?

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

```
DFS(G) {
   list → head = NULL
   t=0:
   for all \mathbf{v} \in \mathbf{V} {
       start(v) = 0;
       finish(v) = 0;
   while \exists v \in V with start(v) = 0 {
       DFS(v);
```

```
DFS(v) {
   t=t+1;
   start(v) = t;
   for each edge (v, u) \in A[v] {
       if start(u) == 0 then DFS(u);
   t = t + 1:
   finish(v) = t;
   temp = list \rightarrow head
   list \rightarrow head = v
   list \rightarrow head \rightarrow next = temp
```

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge:

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge: Directed cycle! Not a DAG.

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (\Leftarrow) : contrapositive. If G has a directed cycle C:

Theorem

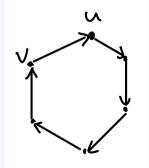
A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (\Leftarrow) : contrapositive. If G has a directed cycle C:

- Let $u \in C$ with minimum start value, v predecessor in cycle
- lacktriangle All nodes in $m{C}$ reachable from $m{u} \implies$ all nodes in $m{C}$ descendants of $m{u}$
- (v, u) a back edge



October 8, 2024

Topological Sort Analysis

Correctness: Since G a DAG, never see back edge

- \implies Every edge (v, u) out of v a forward or cross edge
- \implies finish(u) < finish(v)
- \implies **u** already in list when **v** added to beginning

Topological Sort Analysis

Correctness: Since G a DAG, never see back edge

- \implies Every edge (v, u) out of v a forward or cross edge
- \implies finish(u) < finish(v)
- \implies **u** already in list when **v** added to beginning

Running Time: Same as DFS! O(m+n)