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Introduction

Next 3-4 weeks: graphs!
» Super important abstractions, used all over the place in CS

> Most of my research is in graph algorithms (particularly when graph represents
computer/communication network)
» Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, possibly one or two new
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Basic Definitions
Definition

A graph G = (V,E) is a pair where V is a set and E ¢ (‘2/) (unordered pairs) or EC V x V
(ordered pairs).

Notation:
> Elements of V are called vertices or nodes
> Elements of E are called edges or arcs.
» If Ec (‘2/) then graph is undirected, if E € V x V graph is directed ’O
> |V|=n and |E| = m (usually)
> So “size of input” =n+m
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Representations

Adjacency List: Adjacency Matrix:
> Array A of length n > Ae{0,1}™"
> A[v] is linked list of vertices adjacent to . A = 1 if(i,j)eE
v (edge from u to v) 710 otherwise

_ 123 45

1 2] P51/ 1{0 1001

(1) (2) 2| PP PBE] el 201 0 1 1 1

3) 3 2] P4/ 3]0 1.0 10

4| 2] 5] 3|/ 410 1 1 0 1

(5) (4) S|4l ] 21/ 5111010

123456

1 [ 2] 4 ]/] 1[01 0100

2 {5]/] 2010 000 10

(D (2) (3) 3| 6] F5]/] 310 00 0 1 1

4| 2]/] 4/0 1.0 000

5| {a]/] 51000100

(4) (5) (6 6| 6]/] 6/0 00001
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Representations (cont'd)

Adjacency List:
> Pros:
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Representations (cont'd)

Adjacency List:
> Pros:
> O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently
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Representations (cont'd)

Adjacency List:
> Pros:
> O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

» Cons:
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Representations (cont'd)

Adjacency List:
> Pros:
> O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

» Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)
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Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: » Pros:
> O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

» Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)
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Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: > Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently
» Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)
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Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: > Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
» Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)
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Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: » Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: > Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is > Iterating through edges incident on v
the degree of v: # edges with v as takes time @(n), even if d(v) small.
endpoint)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21



Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: » Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: > Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is > Iterating through edges incident on v
the degree of v: # edges with v as takes time @(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21



Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: » Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: > Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is > Iterating through edges incident on v
the degree of v: # edges with v as takes time @(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?
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Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: » Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: > Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is > Iterating through edges incident on v
the degree of v: # edges with v as takes time @(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?
> Replace adjacency list with adjacency structure: Red-black tree, hash table, etc.

> Not traditional, doesn’t gain us much, and more complicated. But better!
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Breadth-First Search (BFS)
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BFS Definition

|dea: explore graph in levels or layers from source s

L L, L%

/
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BFS Definition

|dea: explore graph in levels or layers from source s
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BFS Definition

|dea: explore graph in levels or layers from source s

— D
4 \ F 4 \
{ b ] | < J
\ S b 'y

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21



BFS Definition

|dea: explore graph in levels or layers from source s
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BFS Definition

|dea: explore graph in levels or layers from source s
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BFS Definition

|dea: explore graph in levels or layers from source s
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BFS Definition

|dea: explore graph in levels or layers from source s
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BFS Definition

|dea: explore graph in levels or layers from source s
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BFS Definition

|dea: explore graph in levels or layers from source s
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BFS Definition

|dea: explore graph in levels or layers from source s
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BFS Definition

|dea: explore graph in levels or layers from source s
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BFS Pseudocode
ldea: explore with a queue (FIFO)

BFS(G = (V, E),s) {
Set mark(s) = True;
Set mark(v) = False for all v e V \ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark(u) == False) {
mark(u) = True;
Enqueue(u);
}
}
}
}
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BFS Pseudocode
ldea: explore with a queue (FIFO)

BFS(G = (V, E),s) {
Set mark(s) = True;
Set mark(v) = False for all v e V \ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark(u) == False) {
mark(u) = True;
Enqueue(u);

Running Time:

}
}
}
}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 8/21



BFS Pseudocode
ldea: explore with a queue (FIFO)

BFS(G = (V, E),s) {
Set mark(s) = True;
Set mark(v) = False for all v e V \ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark(u) == False) {
mark(u) = True;
Enqueue(u);

Running Time: O(n+ m)

}
}
}
}
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BFS Pseudocode
ldea: explore with a queue (FIFO)

BFS(G = (V, E),s) {

Set mark(s) = True; Running Time: O(n+ m)

Set mark(v) = False for all v e V \ {s}; > O(n) for initialization
Enqueue(s); > O(m) for main while loop
while(queue not empty) { > Examine every edge twice:
v = Dequeue(); when each endpoint dequeued
forall neighbors u of v { > Or (equivalent): Adjacency list
if(mark(u) —— False) { scanned only when vertex
mark(u) = True; dequeued
Enqueue(u);

}
}
}
}
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BFS Pseudocode A
ldea: explore with a queue (FIFO)
BFS(G = (V, E),s) { e
Set mark(s) = True; Running Time: O(n+ m)
Set mark(v) = False for all v e V \ {s}; > O(n) for initialization
Enqueue(s); > O(m) for main while loop
while(queue not empty) { > Examine every edge twice:
v = Dequeue(); when each endpoint dequeued
forall neighbors u of v { > Or (equivalent): Adjacency list
if(mark (u) == False) { scanned only when vertex
mark(u) = True; dequeued
Enqueue(u);
} Note: edges that cause a node to be
1 enqueued form a tree!
}
}
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

L L} Ly

000
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; ={v:d(s,v) =1}. Claim that layer i of BFS tree T equals L;.
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; ={v:d(s,v) =1}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Base case: 1 =0.
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; ={v:d(s,v) =1}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Base case: 1 =0. vV
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; ={v:d(s,v) =1}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Base case: 1 =0. vV

> Inductive step: consider i >0, let v € L;.
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; ={v:d(s,v) =1}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Base case: 1 =0. vV

> Inductive step: consider i >0, let v € L;.
Shortest s — v path ends with edge {u, v} with ue L;_;.
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; ={v:d(s,v) =1}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Base case: 1 =0. vV

> Inductive step: consider i >0, let v € L;.
Shortest s — v path ends with edge {u, v} with ueL; 4.
By induction, u in layer i-1 of T
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; ={v:d(s,v) =1}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Base case: 1 =0. vV

> Inductive step: consider i >0, let v € L;.
Shortest s — v path ends with edge {u, v} with ueL; 4.
By induction, u in layer i-1 of T
= {u,v}eT = vatlayeriof T.
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Depth-First Search (DFS)
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DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v, u) € A[v] {
if mark(u) == False then DFS(u);
}
}
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DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v, u) € A[v] {
if mark(u) == False then DFS(u); L
! Running time:

}
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DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v,u) € A[v] {
\ if mark(u) alse then DFS(u); Running time: O(m + n)

}
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DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v, u) € A[v] {

\ if mark(u) alse then DFS(u); Running time: O(m + n)

} > O(n) initialization

» Every edge considered at most
twice
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DFS: Correctness
Definition: u is reachable from v if there is a path v = vy, v1,..., vk = u such that
(vi,vi,1) € Eforallie{0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.
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DFS: Correctness
Definition: u is reachable from v if there is a path v = vy, v1,..., vk = u such that
(vi,vi,1) € Eforallie{0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof. |

Suppose u reachable from v but not marked when DFS(v) terminates.
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DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., vk = u such that
(vi,vi,1) € Eforallie{0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X Y
o—) D/?}—%MHMO_/)O

(2N

F{fs—[— .ﬂnr\&/lcgc‘ node e (7'—“]

x is marked so DFS(x) must have been called
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DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., vk = u such that
(vi,vi,1) € Eforallie{0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X Y
o—) 0_/-\)}_%#/)0——3&%0—/?0

(2N

F{fs—[— u*\hﬁ/lc(_c‘ node e (’f—ﬂl

x is marked so DFS(x) must have been called
== y was either marked or DFS(y) called and it became marked.
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DFS: Correctness
Definition: u is reachable from v if there is a path v = vy, v1,..., vk = u such that
(vi,vi,1) € Eforallie{0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.
Suppose u reachable from v but not marked when DFS(v) terminates.

X Y
o—) 0_/-\)}_%#/)0——3&%0—/?0

(2N

F{fs—[— u*\hﬁ/lc(_c‘ node e (’f—ﬂl

x is marked so DFS(x) must have been called
== y was either marked or DFS(y) called and it became marked.

Contradiction. ]
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Graph variant

After DFS(v), node marked if and only if reachable from v.

Might want to continue until all nodes marked.

DFS(G) {
for all v e V, set mark(v) = False;

while there exists an unmarked node v {
DFS(v);
t

}
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Timestamps

Explicitly keep track of “start” and “finishing” times

> Replaces mark

DFS(G) {
t=0;
forall ve V {
start(v) = 0;
finish(v) = 0;
}
while 3v € V with start(v) =0 {
DFS(v);
}
}

DFS(v) {
t=t+1;
start(v) = t;
for each edge (v, u) € A[v] {
if start(u) == 0 then DFS(u);
}

t=t+1;
finish(v) = t;
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Timestamp Example

11/16 17/18
12/15 (pants 13/14
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Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

\\ Tee edge

\\ Back edge
\\ Forward edgs
W | | \\ Cross edge

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v
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Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

\\ Tee edge

N \\ Back edge
\\ Forward edgs

\\ Cross edge

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a
Y descendent nor an ancestor of v
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Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

\\ Tee edge

\\ Back edge
\\ Forward edgs
\\ Cross edge

Michael Dinitz

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v, u) such that u an ancestor of v
start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v
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Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

\\ Tee edge
\\ Back edge
\\ Forward edgs

\\ Cross edge

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v, u) such that u an ancestor of v

start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

start(u) < finish(u) < start(v) < finish(v)
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Topological Sort
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Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no

directed cycles.

Michael Dinitz
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Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definition

11/16

12/15

A topological sort vi,va,...,v, of a DAG is an ordering of the vertices such that all edges are

of the form (v;, v;j) with i <.

Csocks) @ndershorts pants shoes watch @ﬁ@ @

17/18
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Definitions
Definition
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles. J

11/16 17/18
12115 13/14
@ 18
6/7 @
@ 25
3/4

Definition
A topological sort vi,va,...,v, of a DAG is an ordering of the vertices such that all edges are

of the form (v;, v;j) with i <.

> ) (o) i) o) (o)

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5

Q: Can we always topological sort a DAG? How fast?
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Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list
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Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

DFS(G) {
list - head = NULL;
t=0;
for all ve V {
start(v) = 0;

finish(v) = 0;
}
while 3v € V with start(v) =0 {
DFS(v);
}
}

Michael Dinitz Lecture 13: Basic Graph Algorithms

DFS(v) {
t=t+1:
start(v) = t;
for each edge (v,u) € Alv] {
if start(u) == 0 then DFS(u);
}

t=t+1;

finish(v) = t;

temp = list - head,

list - head = v;

list - head — next = temp;
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Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J
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Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J

Proof.
Only if (=): contrapositive. If G has a back edge:
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Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If («=): contrapositive. If G has a directed cycle C:

W

> Let u € C with minimum start value, v predecessor in cycle \/,/7\]

» All nodes in C reachable from u == all nodes in C descendants of u T

> (v,u) a back edge \/
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
— Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

—= wu already in list when v added to beginning
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
— Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

—= wu already in list when v added to beginning

Running Time: Same as DFS! O(m + n)
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