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Introduction

Next 3-4 weeks: graphs!
» Super important abstractions, used all over the place in CS

» Most of my research is in graph algorithms (particularly when graph represents
computer/communication network)
» Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, possibly one or two new
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Basic Definitions
Definition

A graph G = (V,E) is a pair where V is a set and E ¢ (\2/) (unordered pairs) or EC V x V
(ordered pairs).

Notation:
» Elements of V are called vertices or nodes
Elements of E are called edges or arcs.
If Ec (‘2/) then graph is undirected, if E € V x V graph is directed
|V|=n and |E| = m (usually)
So "“size of input” =n+m

vV v v Vv

S e
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Representations

Adjacency List: Adjacency Matrix:
'S nxn
> Array A of length n Ac{0,1}
» A[v] is linked list of vertices adjacent to > A = 1 if(i,j)eE
y - .
v (edge from u to v) 10 otherwise

1 2 3 45
1 2| 5|/ 110 1.0 0 1
2 L P{s] P33 FHe]/] 2010 1 1 1
3 2| 4|/ 310 1.0 1 0
4 2| —5| ™3|/ 410 1 1 0 1
5 NENNENRZ 501101 0
- 1 23 456
1[ P2 —+{4]/] 110 10100
2 | = 51/ 2/0 00 01 0
(D) (2) (3) 3| 6] P51/ 30000 11
4 L ™ 2|/ 410 1 0 0 0 O
s| Pl 500 00100
(4} (5) O® 6| 6]/ 6/0 00001
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Representations (cont'd)

Adjacency List:
» Pros:
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Representations (cont'd)

Adjacency List:
> Pros:
» O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently
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Representations (cont'd)

Adjacency List:
> Pros:
» O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

» Cons:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21



Representations (cont'd)

Adjacency List:
> Pros:
» O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

> Cons:
» Hard to check of an edge exists:

O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)
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Representations (cont'd)

Adjacency List: Adjacency Matrix:

> Pros: > Pros:
» O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently
> Cons:
» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)
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Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently
> Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)
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Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)
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Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is * lterating through edges incident on v
the degree of v: # edges with v as takes time ©(n), even if d(v) small.
endpoint)
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Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is » |terating through edges incident on v
the degree of v: # edges with v as takes time ©(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.
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Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is » |terating through edges incident on v
the degree of v: # edges with v as takes time ©(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?
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Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is » |terating through edges incident on v
the degree of v: # edges with v as takes time ©(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?
» Replace adjacency list with adjacency structure: Red-black tree, hash table, etc.

» Not traditional, doesn't gain us much, and more complicated. But better!
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Breadth-First Search (BFS)
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BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Definition

Idea: explore graph in levels or layers from source s

N
b

— - :

2 T - # , # LY

(4 ) e ) () (e )

L% % Fy L F
e e ,

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21



BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Pseudocode
Idea: explore with a queue (FIFO)

BFS(G = (V, E),s) {
Set mark(s) = True;
Set mark(v) = False for all v e V ~ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark (u) == False) {
mark (u) = True;
Enqueue(u);
}
}
}

}
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BFS Pseudocode
Idea: explore with a queue (FIFO)

BFS(G = (V, E),s) {

Set mark(s) = True; Running Time:
Set mark(v) = False for all v e V ~ {s};
Enqueue(s);

while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark (u) == False) {
mark(u) = True;
Enqueue(u);
}
}
}

}
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BFS Pseudocode
Idea: explore with a queue (FIFO)

BFS(G = (V, E),s) {

Set mark(s) = True; Running Time: O(n+ m)
Set mark(v) = False for all v e V ~ {s};
Enqueue(s);

while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark (u) == False) {
mark(u) = True;
Enqueue(u);
}
}
}

}
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BFS Pseudocode
Idea: explore with a queue (FIFO)

BFS(G = (V, E),s) {

}

Set mark(s) = True;

Set mark(v) = False for all v e V ~ {s};

Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark (u) == False) {
mark (u) = True;
Enqueue(u);
}
}
}

Running Time: O(n+m)
» O(n) for initialization
» O(m) for main while loop
> Examine every edge twice:
when each endpoint dequeued
> Or (equivalent): Adjacency list
scanned only when vertex
dequeued
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BFS Pseudocode
Idea: explore with a queue (FIFO)

BFS(G = (V, E),s) {
Set mark(s) = True;
Set mark(v) = False for all v e V ~ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark (u) == False) {
mark (u) = True;
Enqueue(u);
}
}
}
}

Running Time: O(n+m)
» O(n) for initialization
» O(m) for main while loop

> Examine every edge twice:
when each endpoint dequeued

> Or (equivalent): Adjacency list
scanned only when vertex
dequeued

Note: edges that cause a node to be
enqueued form a tree!
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; = {v:d(s,v) =i}. Claim that layer i of BFS tree T equals L;.
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; = {v:d(s,v) =i}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Base case: i =0.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 9/21



Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; = {v:d(s,v) =i}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Basecase: i=0. v
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; = {v:d(s,v) =i}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Basecase: i=0. v

» Inductive step: consider i >0, let v € L;.
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; = {v:d(s,v) =i}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Basecase: i=0. v

» Inductive step: consider i >0, let v € L;.
Shortest s - v path ends with edge {u, v} with ue L;_;.
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; = {v:d(s,v) =i}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Basecase: i=0. v

» Inductive step: consider i >0, let v € L;.
Shortest s - v path ends with edge {u, v} with ue L;_;.
By induction, u in layer i =1 of T
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let L; = {v:d(s,v) =i}. Claim that layer i of BFS tree T equals L;.
Induction on 1.

» Basecase: i=0. v

» Inductive step: consider i >0, let v € L;.
Shortest s - v path ends with edge {u, v} with ue L;_;.
By induction, u in layer i =1 of T
= {u,v}eT = vatlayeriof T.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 9/21



Depth-First Search (DFS)
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DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v,u) € A[v] {
if mark(u) == False then DFS(u);
}

}
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DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v,u) € A[v] {
if mark(u) == False then DFS(u); ..
} Running time:

}
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DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v, u) € A[v] {
i€ k(u) == False then DFS(u):
\ if mark(u) alse then (u) Running time: O(m + n)

}
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DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v, u) € A[v] {
i€ k(u) == False then DFS(u):
\ if mark(u) alse then (u) Running time: O(m + n)

} » O(n) initialization

» Every edge considered at most
twice
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DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., Vg = u such that
(vj,vjy1) € E for all i € {0,1,...,k-1}.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.
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DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., Vg = u such that
(vj,vjy1) € E for all i € {0,1,...,k-1}.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X v
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DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., Vg = u such that
(vj,vjy1) € E for all i € {0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

% 4
o—) o_dﬁ_%a_/)o———)a_zo—%o

o

ff'5+ L.'\'\VIQ.J A-L e {"—-U‘

x is marked so DFS(x) must have been called

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 12/21



DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., Vg = u such that
(vj,vjy1) € E for all i € {0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X V4
o/_),,_/\)‘_%,_/)o—_-)a_zo—/)o

o

Fres wane o nod e ("—“1

x is marked so DFS(x) must have been called
== y was either marked or DFS(y) called and it became marked.
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DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., Vg = u such that
(vj,vjy1) € E for all i € {0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.
Suppose u reachable from v but not marked when DFS(v) terminates.

X V4
o/_),,_/\)‘_%,_/)o—_-)a_zo—/;o

o

Fres wane o nod e ("—“1

x is marked so DFS(x) must have been called
== y was either marked or DFS(y) called and it became marked.
Contradiction. 0l
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Graph variant

After DFS(v), node marked if and only if reachable from v.

Might want to continue until all nodes marked.

DFS(G) {
for all v € V, set mark(v) = False;
while there exists an unmarked node v {
DFS(v);
}

}
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Timestamps

Explicitly keep track of “start” and “finishing” times

» Replaces mark

DFS(G) {
t=0;
forallve V {
start(v) = 0;
finish(v) = 0;
}
while 3v € V with start(v) =0 {
DFS(v);
}
}

for each edge (v,u) € A[v] {

DFS(v) {
t=t+1;
start(v) = t;
if start(u) ==
}
t=t+1;

finish(v) = t;

then DFS(u);

Michael Dinitz

Lecture 13: Basic Graph Algorithms

October 8, 2024

14 /21



Timestamp Example

11/16 17/18
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Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

\\ Tee edge

\\ Back edge

\\ Forward edg
\\ Cross edge

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v
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Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

\\ Tee edge

\\ Back edge

\\ Forward edg
\\ Cross edge

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v
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Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

\\ Tee edge

Back ed
?:F;rf,v;dizg Back Edges: (v, u) such that u an ancestor of v
\ Cross edge start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v
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Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

\\ Tee edge

Back ed
?:F;rf,v;dizg Back Edges: (v, u) such that u an ancestor of v
\ Cross edge start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

start(u) < finish(u) < start(v) < finish(v)
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Topological Sort
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Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no

directed cycles.

Michael Dinitz
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Definitions

Definition
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles. J
IIH(» socks ) 17/18
1215 1314
1/x
6/7
(tie) s
Definition

A topological sort vi,va,...,v, of a DAG is an ordering of the vertices such that all edges are
of the form (v;,v;) with i <.

EEORORTT

17/18 11/16 12/15 13/14 910 1718 6/7 2/5 3/4
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Definitions

Definition
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles. J
11/16 (Undershorts) (s0cks) 17718
G @@
215 (Gans) Ghoss) 1314
(shird) s
617 (belt)
(tie) s
Definition

A topological sort vi,va,...,v, of a DAG is an ordering of the vertices such that all edges are
of the form (v;,v;) with i <.

= ~
EEORORTT

17/18 11/16 12/15 13/14 910 1718 6/7 2/5 3/4

Q: Can we always topological sort a DAG? How fast?
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Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list
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Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

DFS(v
OFS(G) { i
list - head = NULL; start(v)’ s
t=0; "
' for each edge (v, u) € A[v] {
forall veV{ if start(u) == 0 then DFS(u);
start(v) = 0; )
finish(v) = 0; fetel
} B - b
while v € V with start(v) =0 { f;:z(—vzis_ti head:
) DFS(v); list - head = v;
) list - head — next = temp;
}
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Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J
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Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.
If (<): contrapositive. If G has a directed cycle C:

wn

» Let u e C with minimum start value, v predecessor in cycle \l./?\]
» All nodes in C reachable from u == all nodes in C descendants of u

» (v,u) a back edge \/
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
== Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

== u already in list when v added to beginning
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
== Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

== u already in list when v added to beginning

Running Time: Same as DFS! O(m + n)
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