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Introduction

Next 3-4 weeks: graphs!

▸ Super important abstractions, used all over the place in CS

▸ Most of my research is in graph algorithms (particularly when graph represents
computer/communication network)

▸ Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, possibly one or two new
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Basic Definitions

Definition

A graph G = (V ,E) is a pair where V is a set and E ⊆ (V
2
) (unordered pairs) or E ⊆ V ×V

(ordered pairs).

Notation:
▸ Elements of V are called vertices or nodes
▸ Elements of E are called edges or arcs.
▸ If E ⊆ (V

2
) then graph is undirected, if E ⊆ V ×V graph is directed

▸ ∣V ∣ = n and ∣E ∣ =m (usually)
▸ So “size of input” = n +m

590 Chapter 22 Elementary Graph Algorithms

1 2

3

45

1
2
3
4
5

2 5
1
2
2
4 1 2

5 3
4

45 3
1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0
1
0
0
1

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.
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Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu! contains all the vertices " such that there is an edge .u; "/ 2 E. That is,
AdjŒu! consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu!.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; "/ is represented by having " appear in AdjŒu!. If G is
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Representations
Adjacency List:

▸ Array A of length n
▸ A[v] is linked list of vertices adjacent to

v (edge from u to v)

Adjacency Matrix:

▸ A ∈ {0,1}n×n

▸ Aij =

⎧⎪⎪
⎨
⎪⎪⎩

1 if (i , j) ∈ E
0 otherwise590 Chapter 22 Elementary Graph Algorithms
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Representations (cont’d)

Adjacency List:
▸ Pros:

▸ O(n +m) space
▸ Can iterate through edges adjacent to v

very efficiently

▸ Cons:
▸ Hard to check of an edge exists:

O(d(u)) or O(d(v)) (where d(v) is
the degree of v : # edges with v as
endpoint)

Adjacency Matrix:
▸ Pros:

▸ Can check if e = (u,v) an edge in O(1)
time

▸ Cons:
▸ Takes Θ(n2) space: if m small, lots

wasted!
▸ Iterating through edges incident on v

takes time Θ(n), even if d(v) small.

This class: adjacency list unless otherwise specified.

Any way to improve these?

▸ Replace adjacency list with adjacency structure: Red-black tree, hash table, etc.

▸ Not traditional, doesn’t gain us much, and more complicated. But better!
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Breadth-First Search (BFS)
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BFS Definition

Idea: explore graph in levels or layers from source s
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BFS Pseudocode
Idea: explore with a queue (FIFO)

BFS(G = (V ,E), s) {
Set mark(s) = True;
Set mark(v) = False for all v ∈ V ∖ {s};
Enqueue(s);
while(queue not empty) {

v = Dequeue();
forall neighbors u of v {

if(mark(u) == False) {
mark(u) = True;
Enqueue(u);

}
}

}
}

Running Time: O(n +m)
▸ O(n) for initialization
▸ O(m) for main while loop

▸ Examine every edge twice:
when each endpoint dequeued

▸ Or (equivalent): Adjacency list
scanned only when vertex
dequeued

Note: edges that cause a node to be
enqueued form a tree!
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Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let Li = {v ∶ d(s,v) = i}. Claim that layer i of BFS tree T equals Li .
Induction on i .
▸ Base case: i = 0. ✓
▸ Inductive step: consider i > 0, let v ∈ Li .

Shortest s − v path ends with edge {u,v} with u ∈ Li−1.
By induction, u in layer i − 1 of T
Ô⇒ {u,v} ∈ T Ô⇒ v at layer i of T .
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Depth-First Search (DFS)
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DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we’ve already seen, then backtrack!

Init: for each v ∈ V , mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v ,u) ∈ A[v] {

if mark(u) == False then DFS(u);
}

}

for each arc (vw) in adjacency-list(v) {

if mark(w) == F then DFS(w)

}

Basically, we look at each arc and if the other side has not already been visited yet, we recursively
visit it. Here’s an example. The labeled nodes are the ones visited by calling DFS(A). The dashed
edges are the ones not traversed, the dotted ones were not even looked at.

A

B

C

D E

F

A node w is reachable from v in G if there is a path v = v0, v1, v2, . . . , vk = w such that each
(vi, vi+1) is an arc of G.

Fact 1 When DFS(v) terminates, it has visited (marked) all the nodes that can be reached from v.

Proof: The simple proof is by induction. We will terminate because every call to DFS(v) is to an
unmarked node, and each such call marks a node. There are n nodes, hence n calls, before we stop.

Now suppose some node w that is reachable from v and is not marked when DFS(v) terminates.
Since w is reachable, there is a path v = v0, v1, v2, . . . , vk = w from v to w, and a first node vi

on this path that is not marked. But this is impossible, because we marked vi�1 and would have
examined the arc (vi�1, vi). ⌅
Of course, it may be the case that not all the nodes in G are reachable from v. So really we should
do the following

DFS-graph(graph G)

for all v in V, mark(v) = F.

While there exists an unmarked node v

DFS(v)

This process will visit all the nodes of the graph (just by the definition of the procedure). Here’s
the old example.

A

B

C

D E

F

G

H

I

It will help to have a few more pieces of data defined, which will make reasoning about DFS much
easier. One is active(v), which is a flag that indicates that v is currently on the recursion stack.
Two other numbers are pre(v) and post(v) which are “times” at which we add v to the recursion
stack, and when we remove v from it. (In 15-210, these were the times at which you enter v and
exit v.)

Here is the depth first search procedure:

2

Running time: O(m + n)
▸ O(n) initialization
▸ Every edge considered at most

twice
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DFS: Correctness
Definition: u is reachable from v if there is a path v = v0,v1, . . . ,vk = u such that
(vi ,vi+1) ∈ E for all i ∈ {0,1, . . . ,k − 1}.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v .

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

Thin when DFS u terminates it has
visited marked all nodes reachable from v

PI Terminates

Sps u reachable from u but not marked

x Y
g o o o o o o q

first unmarked node on path
C ntradictin would have marked y

Dalal I
let ma k v False V veV

while F unmarked n de v DFS u

Timestamps i keep track f start finish times

Replaces mark

x is marked so DFS(x) must have been called
Ô⇒ y was either marked or DFS(y) called and it became marked.
Contradiction.
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Graph variant

After DFS(v), node marked if and only if reachable from v .

Might want to continue until all nodes marked.

DFS(G ) {
for all v ∈ V , set mark(v) = False;
while there exists an unmarked node v {

DFS(v);
}

}
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Timestamps

Explicitly keep track of “start” and “finishing” times

▸ Replaces mark

DFS(G ) {
t = 0;
for all v ∈ V {

start(v) = 0;
finish(v) = 0;

}
while ∃v ∈ V with start(v) = 0 {

DFS(v);
}

}

DFS(v) {
t = t + 1;
start(v) = t;
for each edge (v ,u) ∈ A[v] {

if start(u) == 0 then DFS(u);
}
t = t + 1;
finish(v) = t;

}
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Timestamp Example

22.4 Topological sort 613

11/16

12/15

6/7
1/8

2/5

3/4

17/18

13/14
9/10

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

(a)

(b)

undershorts

pants

belt
shirt

tie

jacket

socks

shoes
watch

socks undershorts pants shoes watch shirt belt tie jacket

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; !/ means that garment u must be put on before garment !. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; !/ in the dag of Figure 22.7(a) indicates that garment u
must be donned before garment !. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times !: f for each vertex !
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.
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Edge Types

DFS naturally gives a spanning forest: edge (v ,u) if DFS(v) calls DFS(u)

Forward Edges: (v ,u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v ,u) such that u an ancestor of v

start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v ,u) such that u neither a
descendent nor an ancestor of v

start(u) < finish(u) < start(v) < finish(v)
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Topological Sort
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Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.22.4 Topological sort 613
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to right.
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TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times !: f for each vertex !
2 as each vertex is finished, insert it onto the front of a linked list
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Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.

Definition

A topological sort v1,v2, . . . ,vn of a DAG is an ordering of the vertices such that all edges are
of the form (vi ,vj ) with i < j .
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Topological Sort

Algorithm (informal): Run DFS(G ). When DFS(v) returns, put v at beginning of list

DFS(G ) {
list → head = NULL;
t = 0;
for all v ∈ V {

start(v) = 0;
finish(v) = 0;

}
while ∃v ∈ V with start(v) = 0 {

DFS(v);
}

}

DFS(v) {
t = t + 1;
start(v) = t;
for each edge (v ,u) ∈ A[v] {

if start(u) == 0 then DFS(u);
}
t = t + 1;
finish(v) = t;
temp = list → head ;
list → head = v ;
list → head → next = temp;

}
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Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G ) has no back edges.

Proof.

Only if (⇒): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (⇐): contrapositive. If G has a directed cycle C :

▸ Let u ∈ C with minimum start value, v predecessor in cycle

▸ All nodes in C reachable from u Ô⇒ all nodes in C descendants of u
▸ (v ,u) a back edge
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge

Ô⇒ Every edge (v ,u) out of v a forward or cross edge

Ô⇒ finish(u) < finish(v)
Ô⇒ u already in list when v added to beginning

Running Time: Same as DFS! O(m + n)
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