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Introduction

Last time: BFS and DFS

Today: Topological Sort, Strongly Connected Components

» Both very classical and important uses of DFS!
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Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Michael Dinitz

\\ Tee edge

\\ Back edge

\\ Forward edg
\\ Cross edge

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v, u) such that u an ancestor of v
start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

start(u) < finish(u) < start(v) < finish(v)
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Topological Sort
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Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.
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Definitions

Definition
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles. J
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Definition

A topological sort vi,va,...,v, of a DAG is an ordering of the vertices such that all edges are
of the form (v;,v;) with i <.
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Definitions

Definition
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles. J
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Definition

A topological sort vi,va,...,v, of a DAG is an ordering of the vertices such that all edges are
of the form (v;,v;) with i <.
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Q: Can we always topological sort a DAG? How fast?
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Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list
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Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

DFS(G) {

list - head = NULL;

t=0;

forall ve V {
start(v) = 0;
finish(v) = 0;

}

while 3v € V with start(v) =0 {
DFS(v);

}
}
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DFS(v) {
t=t+1;
start(v) = t;
for each edge (v,u) € A[v] {
if start(u) == 0 then DFS(u);
}
t=t+1;
finish(v) = t;
temp = list -~ head;
list - head = v;
list - head — next = temp;
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Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J
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Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if (=): contrapositive. If G has a back edge:
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Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.
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Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.
If (<): contrapositive. If G has a directed cycle C:
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Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.
If (<): contrapositive. If G has a directed cycle C:

wn

» Let u e C with minimum start value, v predecessor in cycle \l./?\]
» All nodes in C reachable from u == all nodes in C descendants of u

» (v,u) a back edge \/

Michael Dinitz Lecture 15: Basic Graph Algorithms Il October 14, 2025 7/18



Topological Sort Analysis

Correctness:
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
== Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

== u already in list when v added to beginning
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
== Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

== u already in list when v added to beginning

Running Time:
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
== Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

== u already in list when v added to beginning

Running Time: Same as DFS! O(m + n)
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Strongly Connected Components (SCC)
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Definitions

Another application of DFS. “Kosaraju's Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V, E) a directed graph.
Definition

C c V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v € C, u can reach v and vice versa (bireachable).
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Definitions

Another application of DFS. “Kosaraju's Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V, E) a directed graph.
Definition

C c V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v € C, u can reach v and vice versa (bireachable).

Fact: There is a unique partition of V into
SCCs
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Definitions

Another application of DFS. “Kosaraju's Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V, E) a directed graph.
Definition

C c V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v € C, u can reach v and vice versa (bireachable).

Fact: There is a unique partition of V into
SCCs

Proof: Bireachability is an equivalence
relation: if u and v are bireachable, and v and
w are bireachable, then u and w are
bireachable.
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SCC Problem

Problem: Given G, compute SCCs (partition V into the SCCs)
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SCC Problem

Problem: Given G, compute SCCs (partition V into the SCCs)

Trivial Algorithm:
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SCC Problem

Problem: Given G, compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

Michael Dinitz Lecture 15: Basic Graph Algorithms Il October 14, 2025 11/18



SCC Problem

Problem: Given G, compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

» Running time: O(n(m + n))
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SCC Problem

Problem: Given G, compute SCCs (partition V into the SCCs)

Trivial Algorithm

» Running time

Can we do better?

Michael Dinitz

: DFS/BFS from every node, keep track of what's reachable from where

- O(n(m+n))

O(m+n)?
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Graph of SCCs

Definition: Let G be graph of SCCs:
> Vertex v(C) for each SCC C
» Edge (v(C),v(C’')) if 3ue C,veC suchthat (u,v) e E

Michael Dinitz Lecture 15: Basic Graph Algorithms Il October 14, 2025 12/18



Graph of SCCs

Definition: Let G be graph of SCCs:
> Vertex v(C) for each SCC C
» Edge (v(C),v(C’')) if 3ue C,veC suchthat (u,v) e E
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Graph of SCCs: Structure

Theorem
G is a DAG. J
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Graph of SCCs: Structure

Theorem
G is a DAG.

Proof.

Suppose G not a DAG. Then there is a directed cycle H.

Michael Dinitz Lecture 15: Basic Graph Algorithms Il October 14, 2025 13/18



Graph of SCCs: Structure

Theorem
G is a DAG.

Proof.

Suppose G not a DAG. Then there is a directed cycle H.
> UC:V(C)EH C is an SCC
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Graph of SCCs: Structure

Theorem
G is a DAG.

Proof.

Suppose G not a DAG. Then there is a directed cycle H.
> UC:V(C)EH C is an SCC
== v(C) not an SCC for v(C) e H

Michael Dinitz Lecture 15: Basic Graph Algorithms Il October 14, 2025 13/18



Graph of SCCs: Structure

Theorem
G is a DAG.

Proof.

Suppose G not a DAG. Then there is a directed cycle H.
> UC:V(C)EH C is an SCC
== v(C) not an SCC for v(C) e H

Contradiction!
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Sink SCC

Since G a DAG, has a topological sort

> ¢

T
04@0—%)
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Sink SCC

Since G a DAG, has a topological sort

> ¢

T
Oﬂ@;%()

Definition: SCC C is a sink SCC if no outgoing edges, source SCC if no incoming edges
» Claim: At least one sink SCC exists
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Sink SCC

Since G a DAG, has a topological sort

> ¢

T
Oﬂ@;%()

Definition: SCC C is a sink SCC if no outgoing edges, source SCC if no incoming edges
» Claim: At least one sink SCC exists
» Proof: Final SCC in topological sort of G must be a sink.
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Sink SCC

Since G a DAG, has a topological sort

> ¢

T
Oﬂ@;%()

Definition: SCC C is a sink SCC if no outgoing edges, source SCC if no incoming edges
» Claim: At least one sink SCC exists
» Proof: Final SCC in topological sort of G must be a sink.

What happens if we run DFS(v) where v in a sink SCC?
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Sink SCC

Since G a DAG, has a topological sort

> ¢

T
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Definition: SCC C is a sink SCC if no outgoing edges, source SCC if no incoming edges
» Claim: At least one sink SCC exists
» Proof: Final SCC in topological sort of G must be a sink.

What happens if we run DFS(v) where v in a sink SCC?

» See exactly nodes in C!
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Sink SCC

Since G a DAG, has a topological sort

> ¢

T
Oﬂ@;%()

Definition: SCC C is a sink SCC if no outgoing edges, source SCC if no incoming edges
» Claim: At least one sink SCC exists
» Proof: Final SCC in topological sort of G must be a sink.

What happens if we run DFS(v) where v in a sink SCC?

» See exactly nodes in C!

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat
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SCCs and DFS
Run DFS(G), and let finish(C) = max.c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(Cs).
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SCCs and DFS
Run DFS(G), and let finish(C) = max.c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(Cs).

Proof.
Let x € C; u G, be first node encountered by DFS

Cy
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SCCs and DFS
Run DFS(G), and let finish(C) = max.c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(Cs).

Proof.
Let x € C; u G, be first node encountered by DFS
» If x e Cq:
C
§ ( @
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SCCs and DFS
Run DFS(G), and let finish(C) = max.c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(Cs).

Proof.
Let x € C; u G, be first node encountered by DFS

» If x € Cq: all of C; reachable from x, so DFS(x)
does not complete until all of Cy finished

Cy
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SCCs and DFS
Run DFS(G), and let finish(C) = max.c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(Cs).

Proof.
Let x € C; u G, be first node encountered by DFS

» If x € Cq: all of C; reachable from x, so DFS(x)
does not complete until all of Cy finished

> If x e Cy:
Cy

Michael Dinitz Lecture 15: Basic Graph Algorithms Il October 14, 2025 15/18



SCCs and DFS
Run DFS(G), and let finish(C) = max.c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(Cs).

Proof.
Let x € C; u G, be first node encountered by DFS
» If x € Cq: all of C; reachable from x, so DFS(x)
does not complete until all of Gy finished

» If x € Cy: all of Gy reachable from x but nothing
C. from Ci, so all of Cy finishes before any node in C;
Co starts

Ol
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SCCs and DFS
Run DFS(G), and let finish(C) = max.c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(Cs).

Proof.
Let x € C; u G, be first node encountered by DFS
» If x € Cq: all of C; reachable from x, so DFS(x)
does not complete until all of Cy finished
» If x € Cy: all of Gy reachable from x but nothing
C. ( from Ci, so all of Cy finishes before any node in C;
v starts

Ol

So node of max finishing time in a source SCC (no incoming edges in G).
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Useful Corollary
Run DFS(G) to get finish times.

Corollary

Let C be collection of all SCCs of G, and let C' € C. Let G’ = G ~ (Ucec’ C). Then the node
vV = argmax, ..., cfinish(u) is in an SCC of G that is a source SCC of G'.
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Useful Corollary
Run DFS(G) to get finish times.

Corollary

Let C be collection of all SCCs of G, and let C' € C. Let G’ = G ~ (Ucec’ C). Then the node
vV = argmax, ..., cfinish(u) is in an SCC of G that is a source SCC of G'.

Proof Sketch.
Clearly SCCs of G’ are precisely C~ C’:

. S,
T et
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Useful Corollary
Run DFS(G) to get finish times.

Corollary

Let C be collection of all SCCs of G, and let C' € C. Let G’ = G ~ (Ucec’ C). Then the node
vV = argmax, ..., cfinish(u) is in an SCC of G that is a source SCC of G'.

Proof Sketch.
Clearly SCCs of G’ are precisely C~ C’:

. S,
T et

Suppose v in SCC C not source SCC of G’
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Useful Corollary
Run DFS(G) to get finish times.

Corollary

Let C be collection of all SCCs of G, and let C' € C. Let G’ = G ~ (Ucec’ C). Then the node
vV = argmax, ..., cfinish(u) is in an SCC of G that is a source SCC of G'.

Proof Sketch.
Clearly SCCs of G’ are precisely C~ C’:

. S,
T et

Suppose v in SCC C not source SCC of G’
= exists edge (u’,v’) in G’ where v’ € C but u’ in different SCC C’
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Useful Corollary
Run DFS(G) to get finish times.
Corollary

Let C be collection of all SCCs of G, and let C' € C. Let G’ = G ~ (Ucec’ C). Then the node
vV = argmax, ..., cfinish(u) is in an SCC of G that is a source SCC of G'.

Proof Sketch.
Clearly SCCs of G’ are precisely C~ C’:

. >
0/»@”‘/0—20

Suppose v in SCC C not source SCC of G’
= exists edge (u’,v’) in G’ where v’ € C but u’ in different SCC C’
Lemma == finish(C’) > finish(C), contradiction to def of v. O
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Kosaraju's Algorithm
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Kosaraju's Algorithm
So node with max finish time in a source SCC (no incoming edges in G). Want sink (no
outgoing edges).
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Kosaraju's Algorithm
So node with max finish time in a source SCC (no incoming edges in G). Want sink (no
outgoing edges). Reverse all edges!

Michael Dinitz Lecture 15: Basic Graph Algorithms Il October 14, 2025 17 /18



Kosaraju's Algorithm

So node with max finish time in a source SCC (no incoming edges in G). Want sink (no

outgoing edges). Reverse all edges!
Definition: GT is G with all edges reversed.
» Source SCCin GT is sink SCC in G
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Kosaraju's Algorithm

So node with max finish time in a source SCC (no incoming edges in G). Want sink (no

outgoing edges). Reverse all edges!
Definition: GT is G with all edges reversed.
» Source SCCin GT is sink SCC in G

Kosaraju's Algorithm:
» DFS(GT) to get finishing times and order 7 on V from
largest finishing time to smallest
» Set mark(v) = False for all v e V
» Forall v € V in order of m {
if mark(v) = False {

Run DFS(v), let C be all nodes found
Return C as an SCC
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Kosaraju's Algorithm

So node with max finish time in a source SCC (no incoming edges in G). Want sink (no

outgoing edges). Reverse all edges!
Definition: GT is G with all edges reversed.
» Source SCCin GT is sink SCC in G

Kosaraju's Algorithm:
» DFS(GT) to get finishing times and order 7 on V from
largest finishing time to smallest
» Set mark(v) = False for all v e V
» Forall v € V in order of m {
if mark(v) = False {

Run DFS(v), let C be all nodes found
Return C as an SCC
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Kosaraju's Algorithm

So node with max finish time in a source SCC (no incoming edges in G). Want sink (no

outgoing edges). Reverse all edges!
Definition: GT is G with all edges reversed.
» Source SCCin GT is sink SCC in G

Kosaraju's Algorithm:
» DFS(GT) to get finishing times and order 7 on V from
largest finishing time to smallest
» Set mark(v) = False for all v e V
» Forall v € V in order of m {
if mark(v) = False {

Run DFS(v), let C be all nodes found
Return C as an SCC
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Running Time: O(m + n)
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Correctness Sketch
Let Ci, Cy,. .., Ck be sets identified by algorithm (in order)

Theorem

C; is a sink SCC of G ~ (U,': Cj) and an SCC of G.
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Correctness Sketch
Let Ci, Cy,. .., Ck be sets identified by algorithm (in order)

Theorem

C; is a sink SCC of G ~ (U121 G;), and an SCC of G.

Proof Sketch.

Induction on 1.

> ¢

P
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Correctness Sketch
Let Ci, Cy,. .., Ck be sets identified by algorithm (in order)

Theorem

C; is a sink SCC of G ~ (U121 G;), and an SCC of G.

Proof Sketch.

Induction on 1.

Base case: i = 1. By previous lemma, largest finishing time in GT = in sink SCC of G
= (j is sink SCC of G
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Correctness Sketch
Let Ci, Cy,. .., Ck be sets identified by algorithm (in order)

Theorem

C; is a sink SCC of G ~ (U121 G;), and an SCC of G.

Proof Sketch.

Induction on 1.

Base case: i = 1. By previous lemma, largest finishing time in GT = in sink SCC of G
= (j is sink SCC of G
Inductive case: Let i > 1. Let v unmarked node with largest finishing time.

» By induction, subgraph of unmarked nodes is G minus i -1 SCCs of G

» Corollary == v must be in sink SCC of unmarked nodes so get an SCC of unmarked
nodes when run DFS

» Corollary == SCC of original graph
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