Jessica Sorrell

Lecture 16: Single-Source Shortest Paths

Jessica Sorrell

October 23, 2025
601.433/633 Introduction to Algorithms
Slides by Michael Dinitz

Lecture 16: SSSP

October 23, 2025

1/17

Introduction
Setup:
> Directed graph G = (V, E)
» Length £(x,y) on each edge (x,y) € E (equivalent: £: E - R)
> Length of path P is £(P) = ¥, ,yep £(X,Y)
> d(x,y) =ming,y paths p £(P)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 2/17

Introduction
Setup:
> Directed graph G = (V, E)
Length £(x,y) on each edge (x,y) € E (equivalent: £: E - R)
Length of path P is £(P) = ¥ (s y)ep €(X, y)
d(x,y) = ming_,y paths p £(P)

v

v

v

Today: source v € V, want to compute shortest path from v to every ue V
» d(u) =d(v,u) forall ue V
> Representation: “shortest path tree” out of v.

» Often only care about distances — can reconstruct tree from distances.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 2/17

Bellman-Ford

Jessica Sorrell Lecture 16: SSSP October 23, 2025 3/17

Dynamic Programming Approach

Subproblems:
» OPT (u,i): shortest path from v to u that uses at most i hops (edges)
> If no such path, set to “infinitely long” fake path.

> For simplicity, create loop (edge to and from the same node) at every node, length 0

Jessica Sorrell Lecture 16: SSSP October 23, 2025 4 /17

Dynamic Programming Approach

Subproblems:
» OPT (u,i): shortest path from v to u that uses at most i hops (edges)
> If no such path, set to “infinitely long” fake path.

> For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)
0 ifu=v,k=0
L(OPT (u,k)) =400 ifu+v,k=0
\ otherwise

Jessica Sorrell Lecture 16: SSSP - l October 23, 2025 4 /17

Dynamic Programm

Subproblems:

ing Approach \%

» OPT (u,i): shortest path from v to u that uses at most i hops (edges)

> If no such path, set to “infinitely long” fake path.

> For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

£(OPT (u,k)) = {

¢

0

(e o}

| mi“w:(w,u)eE(e(OPT(Wa k-1))+£(w,u))

ifu=v,k=0
ifu+v,k=0
otherwise

Jessica Sorrell

Lecture 16: SSSP

October 23, 2025 4/17

Proof of Optimal Substructure
Induction on k.

k=0:v.Solet k>1.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 5/17

Proof of Optimal Substructure
Induction on k.

k=0:v". Solet k>1.
< Let x =argmin,,. ., e (£(OPT (w,k -1)) + &(w, u))

= OPT(x,k-1)o(x,u) is a v - u path with at most k edges, length
L(OPT (x,k-1)) +£(x,u))
== L(OPT (u,k)) <miny., ,\ee(£(OPT(w,k-1)) +£(w,u))

Jessica Sorrell Lecture 16: SSSP October 23, 2025 5/17

Proof of Optimal Substructure
Induction on k.

k=0:v". Solet k>1.
< Let x =argmin,,. ., e (£(OPT (w,k -1)) + &(w, u))
= OPT(x,k-1)o(x,u) is a v - u path with at most k edges, length
L(OPT (x,k-1)) +£(x,u))
== L(OPT (u,k)) <miny., ,\ee(£(OPT(w,k-1)) +£(w,u))

>: Let z be node before u in OPT (u, k), and let P’ be the first k-1 edges of OPT (u, k).
Then

L(OPT (u,k)) =£(P") +£(z,u) > £(OPT(z,k-1)) +£(z,u)
> min (£(OPT(w,k-1))+4£(w,u))

w:(w,u)eE

Jessica Sorrell Lecture 16: SSSP October 23, 2025 5/17

Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M([v,0] =0

forlk =1ton-1) {
for(ue V) {
| ML K] = ity (M, =1)

t

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6/17

Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M([v,0] =0

forlk =1ton-1) {
for(ue V) {
| ML K] = ity (M, =1)

t

Running Time:

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6/17

Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M([v,0] =0

forlk =1ton-1) {
for(ue V) {
| ML K] = ity (M, =1)

t

Running Time:
» Obvious: O(n3)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6/17

Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M([v,0] =0

forlk =1ton-1) {
for(ue V) {
| ML K] = ity (M, =1)

t

Running Time:
» Obvious: O(n3)

> Smarter: O(mn)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6/17

Bellman-Ford: Correctness

Theorem
After algorithm completes, M[u, k] = £(OPT (u,k)) forallk<n-1andueV. J

Jessica Sorrell Lecture 16: SSSP October 23, 2025 7/17

Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u, k] = £(OPT (u,k)) forallk<n-1andueV. J

Proof.
Induction on k. Obviously true for k = 0.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 7/17

Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u, k] = £(OPT (u,k)) forallk<n-1andueV.

Proof.
Induction on k. Obviously true for k = 0.

Mlu, k] = (min) E(M[w,k—l]) +€6(w,u)) (algorithm)
w:(w,u)e
= miny,.y 4)ee(E(OPT (w,k -1)) +£(w, u)) (induction)
=L(OPT (u,k)) (optimal substructure)
0
Jessica Sorrell Lecture 16: SSSP

October 23, 2025 7/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

@
» Negative-weight cycle: not really! \ \’L
- e
b -5

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

» No negative-weight cycle: everything we did before is fine!

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
» No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle:

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
» No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
» No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until last year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in é(mna/ %) Time.
STOC 24

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Relaxations

Common primitive in shortest path algorithms
> Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

Jessica Sorrell Lecture 16: SSSP October 23, 2025 9/17

Relaxations

Common primitive in shortest path algorithms
> Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u) = oo for all u # v

Jessica Sorrell Lecture 16: SSSP

October 23, 2025

9/17

Relaxations

Common primitive in shortest path algorithms
> Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u) = oo for all u # v

Intuition for relax(x,y): can we improve J(y) by going
through x?

Jessica Sorrell Lecture 16: SSSP

October 23, 2025

9/17

Relaxations

Common primitive in shortest path algorithms
> Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u) = oo for all u # v

Intuition for relax(x,y): can we improve J(y) by going
through x?

Jessica Sorrell Lecture 16: SSSP

relax()f,y) { i
if(d(y) >d(x) +£(x,y)) {
d(y) = d(x) +£€(x,y)
y.parent = X
h
h

October 23, 2025 9/17

Bellman-Ford as Relaxations

for(i =1 to n) {
foreach(u € V) {
foreach(edge (x,u)) {
relax(x, u)
}

}
}

Jessica Sorrell Lecture 16: SSSP October 23, 2025 10/17

Bellman-Ford as Relaxations

for(i =1 to n) {
foreach(u € V) {
foreach(edge (x,u)) {
relax(x, u)
}

}
}

Not precisely the same: freezing/parallelism

Jessica Sorrell Lecture 16: SSSP October 23, 2025 10/17

Dijkstra’s Algorithm

Jessica Sorrell Lecture 16: SSSP October 23, 2025 11/17

High Level

Intuition: “greedy starting at v"

> BFS but with edge lengths: use priority queue (heap) instead of queue!

Pros: faster than Bellman-Ford (super fast with appropriate data structures)

Cons: Doesn't work with negative edge weights.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 12 /17

Dijkstra’s Algorithm

=2
d(v)=0

d(u) = oo for all u# v

while(not all nodes in T) {
let u be node not in T with minimum d(u)
Add uto T
foreach edge (u,x) with x ¢ T {
relax(u,x)

}

t

Lecture 16: SSSP October 23, 2025 13 /17

Jessica Sorrell

Dijkstra Example

Jessica Sorrell Lecture 16: SSSP October 23, 2025 14 /17

Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and
2. d(u)=d(u) foreveryueT.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 15 /17

Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and
2. d(u) =d(u) foreveryueT.

Proof. Induction on |T| (iterations of algorithm)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 15 /17

Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and
2. d(u) =d(u) foreveryueT.

Proof. Induction on |T| (iterations of algorithm)

Base Case: After first iteration (when |T|=1), added v to T with d(v) =d(v)=0 v

Jessica Sorrell Lecture 16: SSSP October 23, 2025 15 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w' predecessor of u on P. Can't bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w’, u), so
would have w' = u.parent

» x first node of P outside T, previous node y

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w' predecessor of u on P. Can't bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w’, u), so
would have w' = u.parent

» x first node of P outside T, previous node y

d(x) <d(y)+£(y,x) =d(y) +£(y,x) <£(P) = d(u) < d(u)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w' predecessor of u on P. Can't bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w’, u), so
would have w' = u.parent

» x first node of P outside T, previous node y

d(x) <d(y) +£(y,x) = d(y) +£(y,x) <£(P) = d(u) < d(u)
Contradiction! Algorithm would have chosen x next, not w.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 /17

Running Time

Algorithm needs to:

P

» Select node with minimum d value n times

A

» Decrease a d value at most once per relaxation == < m times.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 /17

Running Time

Algorithm needs to:
> Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep d(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 /17

Running Time

Algorithm needs to:
> Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep d(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.

Keep d values in a heap!
> |nsert n times
» Extract-Min n times

» Decrease-Key m times

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 /17

Running Time

Algorithm needs to:
> Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep d(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.

Keep d values in a heap! Binary heap: O(log n) per operation (amortized)
» |nsert n times = O((m+ n)log n) running time.

» Extract-Min n times

» Decrease-Key m times

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 /17

Running Time

Algorithm needs to:
> Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep d(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.

Keep d values in a heap! Binary heap: O(log n) per operation (amortized)
» |nsert n times = O((m+ n)log n) running time.

» Extract-Min n times Fibonacci Heap:

S] .
Decrease-Key m times > Insert, Decrease-Key O(1) amortized
> Extract-Min O(log n) amortized

= O(m+ nlog n) running time

Jessica Sorrell Lecture 16: SSSP October 23, 2025

17 /17

