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Introduction
Setup:
> Directed graph G = (V, E)
» Length £(x,y) on each edge (x,y) € E (equivalent: £: E - R)
> Length of path P is £(P) = ¥, ,yep £(X,Y)
> d(x,y) =ming,y paths p £(P)
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Introduction
Setup:
> Directed graph G = (V, E)
Length £(x,y) on each edge (x,y) € E (equivalent: £: E - R)
Length of path P is £(P) = ¥ (s y)ep €(X, y)
d(x,y) = ming_,y paths p £(P)

v

v

v

Today: source v € V, want to compute shortest path from v to every ue V
» d(u) =d(v,u) forall ue V
> Representation: “shortest path tree” out of v.

» Often only care about distances — can reconstruct tree from distances.
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Bellman-Ford
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Dynamic Programming Approach

Subproblems:
» OPT (u,i): shortest path from v to u that uses at most i hops (edges)
> If no such path, set to “infinitely long” fake path.

> For simplicity, create loop (edge to and from the same node) at every node, length 0
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Dynamic Programming Approach

Subproblems:
» OPT (u,i): shortest path from v to u that uses at most i hops (edges)
> If no such path, set to “infinitely long” fake path.

> For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)
0 ifu=v,k=0
L(OPT (u,k)) =400 ifu+v,k=0
\ otherwise
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Dynamic Programm

Subproblems:

ing Approach \%

» OPT (u,i): shortest path from v to u that uses at most i hops (edges)

> If no such path, set to “infinitely long” fake path.

> For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

£(OPT (u,k)) = {

¢

0

(e o}

| mi“w:(w,u)eE(e(OPT(Wa k-1))+£(w,u))

ifu=v,k=0
ifu+v,k=0
otherwise
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Proof of Optimal Substructure
Induction on k.

k=0:v.Solet k>1.
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Proof of Optimal Substructure
Induction on k.

k=0:v". Solet k>1.
< Let x =argmin,,. ., e (£(OPT (w,k -1)) + &(w, u))

= OPT(x,k-1)o(x,u) is a v - u path with at most k edges, length
L(OPT (x,k-1)) +£(x,u))
== L(OPT (u,k)) <miny., ,\ee(£(OPT(w,k-1)) +£(w,u))
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Proof of Optimal Substructure
Induction on k.

k=0:v". Solet k>1.
< Let x =argmin,,. ., e (£(OPT (w,k -1)) + &(w, u))
= OPT(x,k-1)o(x,u) is a v - u path with at most k edges, length
L(OPT (x,k-1)) +£(x,u))
== L(OPT (u,k)) <miny., ,\ee(£(OPT(w,k-1)) +£(w,u))

>: Let z be node before u in OPT (u, k), and let P’ be the first k-1 edges of OPT (u, k).
Then

L(OPT (u,k)) =£(P") +£(z,u) > £(OPT(z,k-1)) +£(z,u)
> min (£(OPT(w,k-1))+4£(w,u))

w:(w,u)eE
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Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M([v,0] =0

forlk =1ton-1) {
for(ue V) {
| ML K] = ity (M, =1 )

t
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Running Time:
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Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M([v,0] =0

forlk =1ton-1) {
for(ue V) {
| ML K] = ity (M, =1 )

t

Running Time:
» Obvious: O(n3)
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Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M([v,0] =0

forlk =1ton-1) {
for(ue V) {
| ML K] = ity (M, =1 )

t

Running Time:
» Obvious: O(n3)

> Smarter: O(mn)
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Bellman-Ford: Correctness

Theorem
After algorithm completes, M[u, k] = £(OPT (u,k)) forallk<n-1andueV. J
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Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u, k] = £(OPT (u,k)) forallk<n-1andueV. J

Proof.
Induction on k. Obviously true for k = 0.
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Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u, k] = £(OPT (u,k)) forallk<n-1andueV.

Proof.
Induction on k. Obviously true for k = 0.

Mlu, k] = (min) E(M[w,k—l]) +€6(w,u)) (algorithm)
w:(w,u)e
= miny,.y 4)ee(E(OPT (w,k -1)) +£(w, u)) (induction)
=L(OPT (u,k)) (optimal substructure)
0
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Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?
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Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

@
» Negative-weight cycle: not really! \ \’L
- e
b -5
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Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
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Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

» No negative-weight cycle: everything we did before is fine!
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Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
» No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle:
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Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
» No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
» No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until last year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in é(mna/ %) Time.
STOC 24
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Relaxations

Common primitive in shortest path algorithms
> Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm
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Relaxations

Common primitive in shortest path algorithms
> Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u) = oo for all u # v
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Relaxations

Common primitive in shortest path algorithms
> Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u) = oo for all u # v

Intuition for relax(x,y): can we improve J(y) by going
through x?
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Relaxations

Common primitive in shortest path algorithms
> Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u) = oo for all u # v

Intuition for relax(x,y): can we improve J(y) by going
through x?

Jessica Sorrell Lecture 16: SSSP

relax()f,y) { i
if(d(y) >d(x) +£(x,y)) {
d(y) = d(x) +£€(x,y)
y.parent = X
h
h
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Bellman-Ford as Relaxations

for(i =1 to n) {
foreach(u € V) {
foreach(edge (x,u)) {
relax(x, u)
}

}
}
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Bellman-Ford as Relaxations

for(i =1 to n) {
foreach(u € V) {
foreach(edge (x,u)) {
relax(x, u)
}

}
}

Not precisely the same: freezing/parallelism
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Dijkstra’s Algorithm
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High Level

Intuition: “greedy starting at v"

> BFS but with edge lengths: use priority queue (heap) instead of queue!

Pros: faster than Bellman-Ford (super fast with appropriate data structures)

Cons: Doesn't work with negative edge weights.
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Dijkstra’s Algorithm

=2
d(v)=0

d(u) = oo for all u# v

while(not all nodes in T) {
let u be node not in T with minimum d(u)
Add uto T
foreach edge (u,x) with x ¢ T {
relax(u,x)

}

t
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Dijkstra Example
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Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and
2. d(u)=d(u) foreveryueT.
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Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and
2. d(u) =d(u) foreveryueT.

Proof. Induction on |T| (iterations of algorithm)
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Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and
2. d(u) =d(u) foreveryueT.

Proof. Induction on |T| (iterations of algorithm)

Base Case: After first iteration (when |T|=1), added v to T with d(v) =d(v)=0 v
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Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)
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Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w' predecessor of u on P. Can't bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w’, u), so
would have w' = u.parent

» x first node of P outside T, previous node y
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Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w' predecessor of u on P. Can't bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w’, u), so
would have w' = u.parent

» x first node of P outside T, previous node y

d(x) <d(y)+£(y,x) =d(y) +£(y,x) <£(P) = d(u) < d(u)
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Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w' predecessor of u on P. Can't bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w’, u), so
would have w' = u.parent

» x first node of P outside T, previous node y

d(x) <d(y) +£(y,x) = d(y) +£(y,x) <£(P) = d(u) < d(u)
Contradiction! Algorithm would have chosen x next, not w.
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Running Time

Algorithm needs to:

P

» Select node with minimum d value n times

A

» Decrease a d value at most once per relaxation == < m times.
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Running Time

Algorithm needs to:
> Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep d(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.
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Running Time

Algorithm needs to:
> Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep d(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.

Keep d values in a heap!
> |nsert n times
» Extract-Min n times

» Decrease-Key m times
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Running Time

Algorithm needs to:
> Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep d(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.

Keep d values in a heap! Binary heap: O(log n) per operation (amortized)
» |nsert n times = O((m+ n)log n) running time.

» Extract-Min n times

» Decrease-Key m times
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Running Time

Algorithm needs to:
> Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep d(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.

Keep d values in a heap! Binary heap: O(log n) per operation (amortized)
» |nsert n times = O((m+ n)log n) running time.

» Extract-Min n times Fibonacci Heap:

S ] .
Decrease-Key m times > Insert, Decrease-Key O(1) amortized
> Extract-Min O(log n) amortized

= O(m+ nlog n) running time
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