Lecture 16: Single-Source Shortest Paths

Jessica Sorrell

October 23, 2025
601.433/633 Introduction to Algorithms
Slides by Michael Dinitz

Jessica Sorrell Lecture 16: SSSP October 23, 2025

1/17

Introduction
Setup:
» Directed graph G = (V, E)
» Length £(x,y) on each edge (x,y) € E (equivalent: £: E - R)
> Length of path P is £(P) = ¥ ,)ep £(X,)
> d(x,y) =ming,y patns p £(P)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 2/17

Introduction
Setup:
» Directed graph G = (V, E)
Length £(x,y) on each edge (x,y) € E (equivalent: £: E > R)
Length of path P is £(P) = ¥, y)ep £(X,¥)
d(x,y) = miny_y paths p £(P)

v

v

v

Today: source v € V, want to compute shortest path from v to every ue V
» d(u) =d(v,u) forallue Vv
» Representation: “shortest path tree” out of v.

» Often only care about distances — can reconstruct tree from distances.

Jessica Sorrell Lecture 16: SSSP October 23, 2025

2/17

Bellman-Ford

Jessica Sorrell Lecture 16: SSSP October 23, 2025 3/17

Dynamic Programming Approach

Subproblems:
» OPT (u,i): shortest path from v to u that uses at most i hops (edges)
» If no such path, set to “infinitely long” fake path.

» For simplicity, create loop (edge to and from the same node) at every node, length 0

Jessica Sorrell Lecture 16: SSSP October 23, 2025 4/17

Dynamic Programming Approach

Subproblems:
» OPT (u,i): shortest path from v to u that uses at most i hops (edges)
» If no such path, set to “infinitely long” fake path.

» For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

0 ifu=v,k=0
L(OPT (u,k)) =4 00 ifuztv,k=0
otherwise

Jessica Sorrell Lecture 16: SSSP October 23, 2025 4/17

Dynamic Programming Approach

Subproblems:
» OPT (u,i): shortest path from v to u that uses at most i hops (edges)
» If no such path, set to “infinitely long” fake path.

» For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

0 ifu=v,k=0
L(OPT (u,k)) =4 00 ifuztv,k=0
min,.(w,u)ee (L(OPT (w, k -1)) +£(w,u)) otherwise

Jessica Sorrell Lecture 16: SSSP October 23, 2025 4/17

Proof of Optimal Substructure
Induction on k.

k=0:V.Solet k>1.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 5/17

Proof of Optimal Substructure
Induction on k.

k=0:v.Solet k>1.
< Let x =argminy,.(,, e (L(OPT (w, k -1)) + £(w, u))
= OPT(x,k-1)o(x,u) is a v - u path with at most k edges, length
L(OPT (x,k-1)) +£(x,u))
== L(OPT (u,k)) <miny.(y, u)ee(£(OPT (w,k -1)) + £(w, u))

Jessica Sorrell Lecture 16: SSSP October 23, 2025 5/17

Proof of Optimal Substructure
Induction on k.

k=0:v.Solet k>1.
< Let x =argminy,.(,, e (L(OPT (w, k -1)) + £(w, u))
= OPT(x,k-1)o(x,u) is a v - u path with at most k edges, length
L(OPT (x,k-1)) +£(x,u))
== L(OPT (u,k)) <miny.(y, u)ee(£(OPT (w,k -1)) + £(w, u))
. Let z be node before u in OPT (u, k), and let P’ be the first k-1 edges of OPT (u, k).
Then

\Y

L(OPT (u,k)) =£(P’) +£(z,u) > £(OPT (z,k -1)) + £(z, u)
> min E(E(OPT(w,k—l))+£(w,u))

wi(w,u)e

Jessica Sorrell Lecture 16: SSSP October 23, 2025 5/17

Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M[v,0]=0

forlk=1ton-1) {
for(ue V) {
) M(u, k] = minw:(w,u)eE(M[Wv k-1]+£(w,u))

}

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6/17

Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M[v,0]=0

forlk=1ton-1) {
for(ue V) {
) M(u, k] = minw:(w,u)eE(M[Wv k-1]+£(w,u))

}

Running Time:

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6/17

Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M[v,0]=0

forlk=1ton-1) {
for(ue V) {
) M(u, k] = minw:(w,u)eE(M[Wv k-1]+£(w,u))

}

Running Time:
» Obvious: O(n?)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6/17

Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M[v,0]=0

forlk=1ton-1) {
for(ue V) {
) M(u, k] = minw:(w,u)eE(M[Wv k-1]+£(w,u))

}

Running Time:
» Obvious: O(n?)

» Smarter: O(mn)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6/17

Bellman-Ford: Correctness

Theorem
After algorithm completes, M[u, k] = £(OPT (u,k)) forallk <n-1 andue V. J

Jessica Sorrell Lecture 16: SSSP October 23, 2025 7/17

Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u, k] = £(OPT (u,k)) forallk <n-1 andue V.

Proof.
Induction on k. Obviously true for k = 0.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 7/17

Bellman-Ford: Correctness

Theorem
After algorithm completes, M[u, k] = £(OPT (u,k)) for allk <n-1 andue V.

Proof.
Induction on k. Obviously true for k = 0.
Ml[u, k] = (min) E(M[W,k—l])+£(w,u)) (algorithm)
w:(w,u)e
= miny,.(y,u) e (E(OPT (w, k - 1)) + £(w, u)) (induction)
=£(OPT (u,k)) (optimal substructure)
O

Jessica Sorrell Lecture 16: SSSP October 23, 2025 7/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

> Negative-weight cycle: not really!

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

» No negative-weight cycle: everything we did before is fine!

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?
» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
» No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle:

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?
» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
» No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Jessica Sorrell Lecture 16: SSSP October 23, 2025

8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

» Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
» No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until last year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in 6(mn8/9) Time.

STOC 24

Jessica Sorrell Lecture 16: SSSP October 23, 2025

8/17

Relaxations

Common primitive in shortest path algorithms
» Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

Jessica Sorrell Lecture 16: SSSP

October 23, 2025

9/17

Relaxations

Common primitive in shortest path algorithms
» Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u) = oo forall u# v

Jessica Sorrell Lecture 16: SSSP

October 23, 2025

9/17

Relaxations

Common primitive in shortest path algorithms
» Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u) = oo forall u# v

Intuition for relax(x,y): can we improve c?(y) by going
through x?

Jessica Sorrell Lecture 16: SSSP

October 23, 2025

9/17

Relaxations

Common primitive in shortest path algorithms
» Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u) = oo forall u# v

Intuition for relax(x,y): can we improve c?(y) by going
through x?

Jessica Sorrell Lecture 16: SSSP

relax(x, y) {
if(d(y) > d(x) + £(x,y)) {
d(y) = d(x) +£(x,y)
y.parent = x

}

}

October 23, 2025 9/17

Bellman-Ford as Relaxations

for(i=1to n) {
foreach(u € V) {
foreach(edge (x,u)) {
relax(x, u)
}

}
}

Jessica Sorrell Lecture 16: SSSP October 23, 2025 10/17

Bellman-Ford as Relaxations

for(i=1to n) {
foreach(u € V) {
foreach(edge (x,u)) {
relax(x, u)
}

}
}

Not precisely the same: freezing/parallelism

Jessica Sorrell Lecture 16: SSSP

October 23, 2025

10/17

Dijkstra’s Algorithm

Jessica Sorrell Lecture 16: SSSP October 23, 2025 11/17

High Level

Intuition: “greedy starting at v”

» BFS but with edge lengths: use priority queue (heap) instead of queue!

Pros: faster than Bellman-Ford (super fast with appropriate data structures)

Cons: Doesn't work with negative edge weights.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 12/17

Dijkstra's Algorithm

T=
d(v) 0
d(u) =oo foralluv

while(not all nodes in T) {
let u be node not in T with minimum d(u)
Adduto T
foreach edge (u,x) with x ¢ T {
relax(u,x)

}

}

Jessica Sorrell Lecture 16: SSSP October 23, 2025 13 /17

Dijkstra Example

14 /17

October 23, 2025

Lecture 16: SSSP

Jessica Sorrell

Dijkstra Correctness

Theorem

Throughout the algorithm:
1. T is a shortest-path tree from v to the nodes in T, and
2. d(u) =d(u) foreveryueT.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 15 /17

Dijkstra Correctness

Theorem

Throughout the algorithm:
1. T is a shortest-path tree from v to the nodes in T, and
2. d(u) =d(u) foreveryueT.

Proof. Induction on |T| (iterations of algorithm)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 15 /17

Dijkstra Correctness

Theorem

Throughout the algorithm:
1. T is a shortest-path tree from v to the nodes in T, and
2. d(u) =d(u) foreveryueT.

Proof. Induction on |T| (iterations of algorithm)

Base Case: After first iteration (when |T|=1), added v to T with d(v) =d(v) =0 v

Jessica Sorrell Lecture 16: SSSP October 23, 2025 15 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w' predecessor of u on P. Can't bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w', u), so
would have w’ = u.parent

» x first node of P outside T, previous node y

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w' predecessor of u on P. Can't bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w', u), so
would have w’ = u.parent

» x first node of P outside T, previous node y

d(x) <d(y)+£(y,x)=d(y) +£(y,x) < £(P) = d(u) < d(u)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w' predecessor of u on P. Can't bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w', u), so
would have w’ = u.parent

» x first node of P outside T, previous node y

d(x) <d(y)+£(y,x)=d(y) +£(y,x) < £(P) = d(u) < d(u)

Contradiction! Algorithm would have chosen x next, not wu.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 /17

Running Time

Algorithm needs to:
» Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 /17

Running Time

Algorithm needs to:
» Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep a(u) in adjacency list: selecting min d value takes O(n) time
= O(n?+m) = O(n?) total.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 /17

Running Time

Algorithm needs to:
» Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep a(u) in adjacency list: selecting min d value takes O(n) time
= O(n?+m) = O(n?) total.

Keep d values in a heap!
> Insert n times
» Extract-Min n times

» Decrease-Key m times

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 /17

Running Time

Algorithm needs to:
» Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep 3(u) in adjacency list: selecting min d value takes O(n) time
= O(n?+m) = O(n?) total.

Keep d values in a heap! Binary heap: O(logn) per operation (amortized)
» Insert n times == O((m + n)log n) running time.

» Extract-Min n times

» Decrease-Key m times

Jessica Sorrell Lecture 16: SSSP October 23, 2025

17 /17

Running Time

Algorithm needs to:
» Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep 3(u) in adjacency list: selecting min d value takes O(n) time
= O(n?+m) = O(n?) total.

Keep d values in a heap! Binary heap: O(logn) per operation (amortized)
> Insert n times = O((m + n) log n) running time.
R M :
Extract-Min n t|m.es Fibonacci Heap:
> Decrease-Key m times » Insert, Decrease-Key O(1) amortized
» Extract-Min O(log n) amortized

== O(m + nlog n) running time

Jessica Sorrell Lecture 16: SSSP October 23, 2025

17 /17

