
Lecture 16: Single-Source Shortest Paths

Jessica Sorrell

October 23, 2025
601.433/633 Introduction to Algorithms

Slides by Michael Dinitz

Jessica Sorrell Lecture 16: SSSP October 23, 2025 1 / 17



Introduction

Setup:

▸ Directed graph G = (V ,E)
▸ Length `(x,y) on each edge (x,y) ∈ E (equivalent: ` ∶ E → R)

▸ Length of path P is `(P) = ∑(x,y)∈P `(x,y)
▸ d(x,y) =minx→y paths P `(P)

Today: source v ∈ V , want to compute shortest path from v to every u ∈ V
▸ d(u) = d(v ,u) for all u ∈ V
▸ Representation: “shortest path tree” out of v .

▸ Often only care about distances – can reconstruct tree from distances.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 2 / 17



Introduction

Setup:

▸ Directed graph G = (V ,E)
▸ Length `(x,y) on each edge (x,y) ∈ E (equivalent: ` ∶ E → R)

▸ Length of path P is `(P) = ∑(x,y)∈P `(x,y)
▸ d(x,y) =minx→y paths P `(P)

Today: source v ∈ V , want to compute shortest path from v to every u ∈ V
▸ d(u) = d(v ,u) for all u ∈ V
▸ Representation: “shortest path tree” out of v .

▸ Often only care about distances – can reconstruct tree from distances.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 2 / 17



Bellman-Ford

Jessica Sorrell Lecture 16: SSSP October 23, 2025 3 / 17



Dynamic Programming Approach

Subproblems:

▸ OPT(u, i): shortest path from v to u that uses at most i hops (edges)

▸ If no such path, set to “infinitely long” fake path.

▸ For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

`(OPT(u,k)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if u = v ,k = 0

∞ if u ≠ v ,k = 0

minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

otherwise

Jessica Sorrell Lecture 16: SSSP October 23, 2025 4 / 17



Dynamic Programming Approach

Subproblems:

▸ OPT(u, i): shortest path from v to u that uses at most i hops (edges)

▸ If no such path, set to “infinitely long” fake path.

▸ For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

`(OPT(u,k)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if u = v ,k = 0

∞ if u ≠ v ,k = 0

minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

otherwise

Jessica Sorrell Lecture 16: SSSP October 23, 2025 4 / 17



Dynamic Programming Approach

Subproblems:

▸ OPT(u, i): shortest path from v to u that uses at most i hops (edges)

▸ If no such path, set to “infinitely long” fake path.

▸ For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

`(OPT(u,k)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if u = v ,k = 0

∞ if u ≠ v ,k = 0

minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u)) otherwise

Jessica Sorrell Lecture 16: SSSP October 23, 2025 4 / 17



Proof of Optimal Substructure

Induction on k .

k = 0 ∶ ✓. So let k ≥ 1.

≤: Let x = argminw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))
Ô⇒ OPT(x,k − 1) ○ (x,u) is a v → u path with at most k edges, length
`(OPT(x,k − 1)) + `(x,u))
Ô⇒ `(OPT(u,k)) ≤minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

≥: Let z be node before u in OPT(u,k), and let P ′ be the first k − 1 edges of OPT(u,k).
Then

`(OPT(u,k)) = `(P ′) + `(z,u) ≥ `(OPT(z,k − 1)) + `(z,u)
≥ min

w ∶(w ,u)∈E
(`(OPT(w ,k − 1)) + `(w ,u))

Jessica Sorrell Lecture 16: SSSP October 23, 2025 5 / 17



Proof of Optimal Substructure

Induction on k .

k = 0 ∶ ✓. So let k ≥ 1.

≤: Let x = argminw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))
Ô⇒ OPT(x,k − 1) ○ (x,u) is a v → u path with at most k edges, length
`(OPT(x,k − 1)) + `(x,u))
Ô⇒ `(OPT(u,k)) ≤minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

≥: Let z be node before u in OPT(u,k), and let P ′ be the first k − 1 edges of OPT(u,k).
Then

`(OPT(u,k)) = `(P ′) + `(z,u) ≥ `(OPT(z,k − 1)) + `(z,u)
≥ min

w ∶(w ,u)∈E
(`(OPT(w ,k − 1)) + `(w ,u))

Jessica Sorrell Lecture 16: SSSP October 23, 2025 5 / 17



Proof of Optimal Substructure

Induction on k .

k = 0 ∶ ✓. So let k ≥ 1.

≤: Let x = argminw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))
Ô⇒ OPT(x,k − 1) ○ (x,u) is a v → u path with at most k edges, length
`(OPT(x,k − 1)) + `(x,u))
Ô⇒ `(OPT(u,k)) ≤minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

≥: Let z be node before u in OPT(u,k), and let P ′ be the first k − 1 edges of OPT(u,k).
Then

`(OPT(u,k)) = `(P ′) + `(z,u) ≥ `(OPT(z,k − 1)) + `(z,u)
≥ min

w ∶(w ,u)∈E
(`(OPT(w ,k − 1)) + `(w ,u))

Jessica Sorrell Lecture 16: SSSP October 23, 2025 5 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = ∞ for all u ∈ V ,u ≠ v
M[v ,0] = 0

for(k = 1 to n − 1) {
for(u ∈ V ) {

M[u,k] =minw ∶(w ,u)∈E(M[w ,k − 1] + `(w ,u))
}

}

Running Time:

▸ Obvious: O(n3)
▸ Smarter: O(mn)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = ∞ for all u ∈ V ,u ≠ v
M[v ,0] = 0

for(k = 1 to n − 1) {
for(u ∈ V ) {

M[u,k] =minw ∶(w ,u)∈E(M[w ,k − 1] + `(w ,u))
}

}

Running Time:

▸ Obvious: O(n3)
▸ Smarter: O(mn)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = ∞ for all u ∈ V ,u ≠ v
M[v ,0] = 0

for(k = 1 to n − 1) {
for(u ∈ V ) {

M[u,k] =minw ∶(w ,u)∈E(M[w ,k − 1] + `(w ,u))
}

}

Running Time:

▸ Obvious: O(n3)

▸ Smarter: O(mn)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = ∞ for all u ∈ V ,u ≠ v
M[v ,0] = 0

for(k = 1 to n − 1) {
for(u ∈ V ) {

M[u,k] =minw ∶(w ,u)∈E(M[w ,k − 1] + `(w ,u))
}

}

Running Time:

▸ Obvious: O(n3)
▸ Smarter: O(mn)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 6 / 17



Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u,k] = `(OPT(u,k)) for all k ≤ n − 1 and u ∈ V .

Proof.

Induction on k . Obviously true for k = 0.

M[u,k] = min
w ∶(w ,u)∈E

(M[w ,k − 1]) + `(w ,u)) (algorithm)

= minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u)) (induction)

= `(OPT(u,k)) (optimal substructure)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 7 / 17



Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u,k] = `(OPT(u,k)) for all k ≤ n − 1 and u ∈ V .

Proof.

Induction on k . Obviously true for k = 0.

M[u,k] = min
w ∶(w ,u)∈E

(M[w ,k − 1]) + `(w ,u)) (algorithm)

= minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u)) (induction)

= `(OPT(u,k)) (optimal substructure)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 7 / 17



Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u,k] = `(OPT(u,k)) for all k ≤ n − 1 and u ∈ V .

Proof.

Induction on k . Obviously true for k = 0.

M[u,k] = min
w ∶(w ,u)∈E

(M[w ,k − 1]) + `(w ,u)) (algorithm)

= minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u)) (induction)

= `(OPT(u,k)) (optimal substructure)

Jessica Sorrell Lecture 16: SSSP October 23, 2025 7 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until last year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn8/9) Time.

STOC ’24

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really!

Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until last year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn8/9) Time.

STOC ’24

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until last year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn8/9) Time.

STOC ’24

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until last year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn8/9) Time.

STOC ’24

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle:

One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until last year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn8/9) Time.

STOC ’24

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until last year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn8/9) Time.

STOC ’24

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until last year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn8/9) Time.

STOC ’24

Jessica Sorrell Lecture 16: SSSP October 23, 2025 8 / 17



Relaxations

Common primitive in shortest path algorithms

▸ Reinterpret Bellman-Ford via relaxations

▸ Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
▸ Initially: d̂(v) = 0, d̂(u) = ∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Jessica Sorrell Lecture 16: SSSP October 23, 2025 9 / 17



Relaxations

Common primitive in shortest path algorithms

▸ Reinterpret Bellman-Ford via relaxations

▸ Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
▸ Initially: d̂(v) = 0, d̂(u) = ∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Jessica Sorrell Lecture 16: SSSP October 23, 2025 9 / 17



Relaxations

Common primitive in shortest path algorithms

▸ Reinterpret Bellman-Ford via relaxations

▸ Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
▸ Initially: d̂(v) = 0, d̂(u) = ∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Jessica Sorrell Lecture 16: SSSP October 23, 2025 9 / 17



Relaxations

Common primitive in shortest path algorithms

▸ Reinterpret Bellman-Ford via relaxations

▸ Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
▸ Initially: d̂(v) = 0, d̂(u) = ∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Jessica Sorrell Lecture 16: SSSP October 23, 2025 9 / 17



Bellman-Ford as Relaxations

for(i = 1 to n) {
foreach(u ∈ V ) {

foreach(edge (x,u)) {
relax(x,u)

}
}

}

Not precisely the same: freezing/parallelism

Jessica Sorrell Lecture 16: SSSP October 23, 2025 10 / 17



Bellman-Ford as Relaxations

for(i = 1 to n) {
foreach(u ∈ V ) {

foreach(edge (x,u)) {
relax(x,u)

}
}

}

Not precisely the same: freezing/parallelism

Jessica Sorrell Lecture 16: SSSP October 23, 2025 10 / 17



Dijkstra’s Algorithm

Jessica Sorrell Lecture 16: SSSP October 23, 2025 11 / 17



High Level

Intuition: “greedy starting at v”

▸ BFS but with edge lengths: use priority queue (heap) instead of queue!

Pros: faster than Bellman-Ford (super fast with appropriate data structures)

Cons: Doesn’t work with negative edge weights.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 12 / 17



Dijkstra’s Algorithm

T = ∅
d̂(v) = 0
d̂(u) = ∞ for all u ≠ v

while(not all nodes in T ) {
let u be node not in T with minimum d̂(u)
Add u to T
foreach edge (u,x) with x /∈ T {

relax(u,x)
}

}

Jessica Sorrell Lecture 16: SSSP October 23, 2025 13 / 17



Dijkstra Example24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.

Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex
in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

Jessica Sorrell Lecture 16: SSSP October 23, 2025 14 / 17



Dijkstra Correctness

Theorem

Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T , and

2. d̂(u) = d(u) for every u ∈ T .

Proof. Induction on ∣T ∣ (iterations of algorithm)

Base Case: After first iteration (when ∣T ∣ = 1), added v to T with d̂(v) = d(v) = 0 ✓

Jessica Sorrell Lecture 16: SSSP October 23, 2025 15 / 17



Dijkstra Correctness

Theorem

Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T , and

2. d̂(u) = d(u) for every u ∈ T .

Proof. Induction on ∣T ∣ (iterations of algorithm)

Base Case: After first iteration (when ∣T ∣ = 1), added v to T with d̂(v) = d(v) = 0 ✓

Jessica Sorrell Lecture 16: SSSP October 23, 2025 15 / 17



Dijkstra Correctness

Theorem

Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T , and

2. d̂(u) = d(u) for every u ∈ T .

Proof. Induction on ∣T ∣ (iterations of algorithm)

Base Case: After first iteration (when ∣T ∣ = 1), added v to T with d̂(v) = d(v) = 0 ✓

Jessica Sorrell Lecture 16: SSSP October 23, 2025 15 / 17



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T , let w = u.parent
Ô⇒ d̂(u) = d̂(w) + `(w ,u) = d(w) + `(w ,u) (induction)

▸ Red path P actual shortest path, black path
found by Dijkstra

▸ w ′ predecessor of u on P. Can’t be in T .
▸ If it was, would have d̂(w ′) = d(w ′) by

induction, would have relaxed (w ′,u), so
would have w ′ = u.parent

▸ x first node of P outside T , previous node y

d̂(x) ≤ d̂(y) + `(y ,x) = d(y) + `(y ,x) < `(P) = d(u) ≤ d̂(u)

Contradiction! Algorithm would have chosen x next, not u.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 / 17



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T , let w = u.parent
Ô⇒ d̂(u) = d̂(w) + `(w ,u) = d(w) + `(w ,u) (induction)

▸ Red path P actual shortest path, black path
found by Dijkstra

▸ w ′ predecessor of u on P. Can’t be in T .
▸ If it was, would have d̂(w ′) = d(w ′) by

induction, would have relaxed (w ′,u), so
would have w ′ = u.parent

▸ x first node of P outside T , previous node y

d̂(x) ≤ d̂(y) + `(y ,x) = d(y) + `(y ,x) < `(P) = d(u) ≤ d̂(u)

Contradiction! Algorithm would have chosen x next, not u.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 / 17



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T , let w = u.parent
Ô⇒ d̂(u) = d̂(w) + `(w ,u) = d(w) + `(w ,u) (induction)

▸ Red path P actual shortest path, black path
found by Dijkstra

▸ w ′ predecessor of u on P. Can’t be in T .
▸ If it was, would have d̂(w ′) = d(w ′) by

induction, would have relaxed (w ′,u), so
would have w ′ = u.parent

▸ x first node of P outside T , previous node y

d̂(x) ≤ d̂(y) + `(y ,x) = d(y) + `(y ,x) < `(P) = d(u) ≤ d̂(u)

Contradiction! Algorithm would have chosen x next, not u.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 / 17



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T , let w = u.parent
Ô⇒ d̂(u) = d̂(w) + `(w ,u) = d(w) + `(w ,u) (induction)

▸ Red path P actual shortest path, black path
found by Dijkstra

▸ w ′ predecessor of u on P. Can’t be in T .
▸ If it was, would have d̂(w ′) = d(w ′) by

induction, would have relaxed (w ′,u), so
would have w ′ = u.parent

▸ x first node of P outside T , previous node y

d̂(x) ≤ d̂(y) + `(y ,x) = d(y) + `(y ,x) < `(P) = d(u) ≤ d̂(u)

Contradiction! Algorithm would have chosen x next, not u.

Jessica Sorrell Lecture 16: SSSP October 23, 2025 16 / 17



Running Time

Algorithm needs to:

▸ Select node with minimum d̂ value n times

▸ Decrease a d̂ value at most once per relaxation Ô⇒ ≤ m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time
Ô⇒ O(n2 +m) = O(n2) total.

Keep d̂ values in a heap!

▸ Insert n times

▸ Extract-Min n times

▸ Decrease-Key m times

Binary heap: O(logn) per operation (amortized)
Ô⇒ O((m + n) logn) running time.

Fibonacci Heap:

▸ Insert, Decrease-Key O(1) amortized

▸ Extract-Min O(logn) amortized

Ô⇒ O(m + n logn) running time

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 / 17



Running Time

Algorithm needs to:

▸ Select node with minimum d̂ value n times

▸ Decrease a d̂ value at most once per relaxation Ô⇒ ≤ m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time
Ô⇒ O(n2 +m) = O(n2) total.

Keep d̂ values in a heap!

▸ Insert n times

▸ Extract-Min n times

▸ Decrease-Key m times

Binary heap: O(logn) per operation (amortized)
Ô⇒ O((m + n) logn) running time.

Fibonacci Heap:

▸ Insert, Decrease-Key O(1) amortized

▸ Extract-Min O(logn) amortized

Ô⇒ O(m + n logn) running time

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 / 17



Running Time

Algorithm needs to:

▸ Select node with minimum d̂ value n times

▸ Decrease a d̂ value at most once per relaxation Ô⇒ ≤ m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time
Ô⇒ O(n2 +m) = O(n2) total.

Keep d̂ values in a heap!

▸ Insert n times

▸ Extract-Min n times

▸ Decrease-Key m times

Binary heap: O(logn) per operation (amortized)
Ô⇒ O((m + n) logn) running time.

Fibonacci Heap:

▸ Insert, Decrease-Key O(1) amortized

▸ Extract-Min O(logn) amortized

Ô⇒ O(m + n logn) running time

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 / 17



Running Time

Algorithm needs to:

▸ Select node with minimum d̂ value n times

▸ Decrease a d̂ value at most once per relaxation Ô⇒ ≤ m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time
Ô⇒ O(n2 +m) = O(n2) total.

Keep d̂ values in a heap!

▸ Insert n times

▸ Extract-Min n times

▸ Decrease-Key m times

Binary heap: O(logn) per operation (amortized)
Ô⇒ O((m + n) logn) running time.

Fibonacci Heap:

▸ Insert, Decrease-Key O(1) amortized

▸ Extract-Min O(logn) amortized

Ô⇒ O(m + n logn) running time

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 / 17



Running Time

Algorithm needs to:

▸ Select node with minimum d̂ value n times

▸ Decrease a d̂ value at most once per relaxation Ô⇒ ≤ m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time
Ô⇒ O(n2 +m) = O(n2) total.

Keep d̂ values in a heap!

▸ Insert n times

▸ Extract-Min n times

▸ Decrease-Key m times

Binary heap: O(logn) per operation (amortized)
Ô⇒ O((m + n) logn) running time.

Fibonacci Heap:

▸ Insert, Decrease-Key O(1) amortized

▸ Extract-Min O(logn) amortized

Ô⇒ O(m + n logn) running time

Jessica Sorrell Lecture 16: SSSP October 23, 2025 17 / 17


