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Announcements

» Mid-Semester feedback on Courselore!

» No lecture notes
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Introduction
Setup:
> Directed graph G = (V, E)
» Length £(x,y) on each edge (x,y) € E
> Length of path P is £(P) = ¥, ,)ep £(X,Y)
> d(x,y) =ming,y paths P £(P)

Last time: All distances from source node v e V.

Today: Distances between all pairs of nodes!
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Setup:
> Directed graph G = (V, E)
» Length £(x,y) on each edge (x,y) € E
> Length of path P is £(P) = ¥, ,)ep £(X,Y)
> d(x,y) =ming,y paths P £(P)

Last time: All distances from source node v e V.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v € V
> No negative weights: n runs of Dijkstra, time O(n(m + nlog n))
» Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn?)
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Introduction

Setup:
> Directed graph G = (V, E)
» Length £(x,y) on each edge (x,y) € E
> Length of path P is £(P) = ¥, ,)ep £(X,Y)
> d(X,y) = minx_,y paths pf(P)

Last time: All distances from source node v e V.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v € V
> No negative weights: n runs of Dijkstra, time O(n(m + nlog n))
» Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn?)

Can we do better? Particularly for negative edge weights?
» Main goal today: Negative weights as fast as possible.
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Floyd-Warshall Algorithm

Jessica Sorrell Lecture 17: APSP October 28, 2025 4 /14



Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V ={1,2,...,n} and £(i,j) = oo if (i,j) ¢ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V ={1,2,...,n} and £(i,j) = oo if (i,j) ¢ E
Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:

> Intuition: “shortest path from u to v either goes through node n, or it doesn't”

> If it doesn't: shortest uses only first nodes in {1,2,...,n-1}.
> If it does: consists of a path P; from u to n and a path P, from n to v, neither of which
uses n (internally).
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V ={1,2,...,n} and £(i,j) = oo if (i,j) ¢ E
Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:

> Intuition: “shortest path from u to v either goes through node n, or it doesn't”

> If it doesn't: shortest uses only first nodes in {1,2,...,n-1}.
> If it does: consists of a path P; from u to n and a path P, from n to v, neither of which
uses n (internally).

> Subproblems: shortest path from u to v that only uses nodes in {1,2,...k} for all
u,v, k.
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Formalizing Subproblems

u — v path P: “intermediate nodes” are all nodes in P other than u, v.

d'.jf: distance from i to j using only i — j paths with intermediate vertices in {1,2,...,k}.
» Goal: compute dl.jf for all i,j, k € [n].
» Return d,.;' forall i,je V.
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Formalizing Subproblems

u — v path P: “intermediate nodes” are all nodes in P other than u, v.

d'.jf: distance from i to j using only i — j paths with intermediate vertices in {1,2,...,k}.
» Goal: compute dl.jf for all i,j, k € [n].
» Return d,.;' forall i,je V.

e [2G0) if k=0
i if k1

Jessica Sorrell Lecture 17: APSP October 28, 2025 6/14



Formalizing Subproblems

u — v path P: “intermediate nodes” are all nodes in P other than u, v.

d'.jf: distance from i to j using only i — j paths with intermediate vertices in {1,2,...,k}.
» Goal: compute dl.jf for all i,j, k € [n].
» Return d,.;' forall i,je V.

gk = JEGsd) Th=0
T min(diT AT+ dh) i k> 1
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Optimal Substructure

Theorem
For all i,j,k € [n]:

gk = A0 k=0
i \min(dft,dit diY) ifk> 1
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Optimal Substructure

Theorem
For all i,j,k € [n]:

i \min(dft,dit diY) ifk> 1

If k=0: v

If k> 1: prove < and >
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Optimal Substructure

Theorem
For all i,j,k € [n]:
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Yo |min(df Tt it + S ifk21 J
If k=0: v
If k> 1: prove < and >
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Optimal Substructure

Theorem
For all i,j,k € [n]:

€(i,J) ifk=0
d;; =
Yo |min(df Tt it + S ifk21

If k=0: v

If k> 1: prove < and >
<: Two feasible solutions
>: Let P be shortest i — j path with all intermediate nodes in [k]
> If k not an intermediate node of P: P has all intermediate nodes in [k-1] =
min(df ™", di~t + diSt) < df < £(P) = df
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Optimal Substructure

Theorem
For all i,j,k € [n]:

€(i,J) ifk=0
d;; =
Yo |min(df Tt it + S ifk21

If k=0: v

If k> 1: prove < and >
<: Two feasible solutions
>: Let P be shortest i — j path with all intermediate nodes in [k]
> If k not an intermediate node of P: P has all intermediate nodes in [k-1] =
min(df ™", di~t + diSt) < df < £(P) = df
> If k is an intermediate node of P: divide P into Py (subpath from i to k) and P,
(subpath from k to j)

min(d ™, dit + dS) < diTh A <€(Py) +£(Py) = £(P) = df
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

Mli,j,0] =£(i,j) for all i,j € [n]
for(k =1 to n)
for(i =1 to n)
for(j =1 to n)
Mli,j, k] = min(M[i,j,k-1],M[i, k,k -1] + M[k,j, k - 1])

™~ Ml b,0 )= 2
m(Cb,e,01* ©°

,_§_’ M(b,d,1 v~ MLk o:( M (b0l

7 WL/’L' : | Medie]
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

Mli,j,0] =£(i,j) for all i,j € [n]
for(k =1 to n)
for(i =1 to n)
for(j =1 to n)
M[’a.’ak] :min(M[iajvk_l]aM[iakak_1]+M[k9j7k_1])

Correctness: obvious for k=0. For k> 1:

Mli,j, k] =min(M[i,j, k-1],M[i,k,k-1]+ M[k,j, k -1]) (def of algorithm)
= min(dijf'l, d,.',‘('1 + dlg.'l) (induction)
= d,;f (optimal substructure)
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

Mli,j,0] =£(i,j) for all i,j € [n]
for(k =1 to n)
for(i =1 to n)
for(j =1 to n)
M[’a.’ak] :min(M[iajak_l]aM[iakak_1]+M[k9j7k_1])

Correctness: obvious for k=0. For k> 1:

Mli,j, k] =min(M[i,j, k-1],M[i,k,k-1]+ M[k,j, k -1]) (def of algorithm)
= min(dijf'l, d,.',‘('1 + dlg.'l) (induction)
= d,;f (optimal substructure)

Running Time: O(n?)
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Fun Fact

(\\\\/.

d If)\lv > ¢s > arXiv:1904.01210

Computer Science > Data Structures and Algorithms

[Submitted on 2 Apr 2019]

Incorrect implementations of the Floyd--Warshall algorithm give correct solutions after three
repeats

Ilkumi Hide, Soh Kumabe, Takanori Maehara

The Floyd--Warshall algorithm is a well-known algorithm for the all-pairs shortest path problem that is simply implemented by triply nested loops. In this study, we show
that the incorrect implementations of the Floyd--Warshall algorithm that misorder the triply nested loops give correct solutions if these are repeated three times.

Subjects: Data Structures and Algorithms (cs.DS)

Cite as:  arXiv:1904.01210 [cs.DS]
(or arXiv:1904.01210v1 [cs.DS] for this version)
https://doi.org/10.48550/arXiv.1904.01210 O

Submission history

From: Takanori Maehara [view email]
[v1l] Tue, 2 Apr 2019 04:39:28 UTC (4 KB)
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Johnson's Algorithm
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Reweighting

Different Approach: Can we “fix’ negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlog n)) = O(mn + n?log n), better than Floyd-Warshall
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First attempt: Let —a be smallest length (most negative). Add « to every edge.

» Does this work?
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Reweighting
Different Approach: Can we “fix’ negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlog n)) = O(mn + n?log n), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add « to every edge.

» Does this work? Nol

ey Loo
> New length of path P is E@ + a|P|, so original / w
. . . Qee yl " Ko( l" (O
shortest path might no longer be shortest path if it has NE 2 5
many edges. : A
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Reweighting
Different Approach: Can we “fix’ negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlog n)) = O(mn + n?log n), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add « to every edge.

» Does this work? Nol

ey Loo
> New length of path P is £(P) + a|P)|, so original / $ee :
. P Cee ol (- et lo\ (O
shortest path might no longer be shortest path if it has NG 2 I 5
many edges. : A

Some other kind of reweighting? Need new lengths £ such that:
» Path P a shortest path under lengths £ if and only P a shortest path under lengths 0
> {(u,v) >0 for all (u,v)eE
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V - R be node weights.
> Let £p(u,v) =£(u,v) + h(u) - h(v)

Jessica Sorrell Lecture 17: APSP October 28, 2025 12/14



Vertex Reweighting

Neat observation: put weights at vertices!
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Let P =(vg, vy,...,Vx) be arbitrary (not necessarily shortest) path.
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V - R be node weights.
> Let £p(u,v) =£(u,v) + h(u) - h(v)

Let P =(vg, vy,...,Vx) be arbitrary (not necessarily shortest) path.

k-1 k-1
Lh(P) = Z(:]fh(via Visl) = ;} (£(vi, vir1) + h(v;) - h(vi,1))
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V - R be node weights.
> Let £p(u,v) =£(u,v) + h(u) - h(v)

Let P =(vg, vy,...,Vx) be arbitrary (not necessarily shortest) path.

k-1 k-1
en(P) = Z(:Jeh(via Visl) = Z(:) (€(vi, vie1) + h(v;) - h(vi.1))
k-1
= h(vp) - h(vg) + Z(:]E(Via Viil) (telescoping)
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V - R be node weights.
> Let £p(u,v) =£(u,v) + h(u) - h(v)

Let P =(vg, vy,...,Vx) be arbitrary (not necessarily shortest) path.

k-1 k-1
€n(P) = ). Ln(viyvis1) = ) (£(Viy vie1) + h(v;) = h(Vis1))

i=0 i=0
k-1

= h(vp) - h(v) + ) £(vi, vis1) (telescoping)
i=0

=£(P) + h(vo) - h(vy)
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V - R be node weights.
> Let £p(u,v) =£(u,v) + h(u) - h(v)

Let P =(vg, vy,...,Vx) be arbitrary (not necessarily shortest) path.

k-1 k-1
Lp(P) = Z{;Eh(vi, Visl) = Z(:) (£(vi, vis1) + h(v;) = h(vi.1))
k-1
= h(vo) - h(vi) + ), £(vi, vis1) (telescoping)
iz0

= £(P) + h(vo) - h(vk)
h(vg) — h(vy) added to every vy — v path, so shortest path from vy to v still shortest path!
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0

O o
%
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0
» Run Bellman-Ford from s, then for all u € V set h(u) to be d(s, u)
> Note h(u) <0 for all ue V
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0
» Run Bellman-Ford from s, then for all u € V set h(u) to be d(s, u)
> Note h(u) <0 for all ue V

Want to show that £,(u, v) > 0 for all edges (u,v).
> Triangle inequality: h(v) =d(s,v) <d(s,u) +£(u,v) = h(u) + £(u, v)
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0
» Run Bellman-Ford from s, then for all u € V set h(u) to be d(s, u)
> Note h(u) <0 for all ue V

Want to show that £,(u, v) > 0 for all edges (u,v).
> Triangle inequality: h(v) =d(s,v) <d(s,u) +£(u,v) = h(u) + £(u, v)

bp(u,v) =£€(u,v) + h(u)-h(v) >2£€(u,v)+ h(u) - (h(u) +£(u,v))=0
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Johnson's Algorithm

» Add vertex s to graph, edge (s, u) for all ue V with £(s,u) =0

> Run Bellman-Ford from s, set h(u) = d(s, u)

> Remove s, run Dijkstra from every node u € V to get dp(u,v) for all u,v eV
> If want distances, set d(u,v) = dp(u,v) - h(u) + h(v) for all u,ve V

Correctness: From previous discussion.
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> Run Bellman-Ford from s, set h(u) = d(s, u)

> Remove s, run Dijkstra from every node u € V to get dp(u,v) for all u,v eV
> If want distances, set d(u,v) = dp(u,v) - h(u) + h(v) for all u,ve V

Correctness: From previous discussion.

Running Time:
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Johnson's Algorithm

» Add vertex s to graph, edge (s, u) for all ue V with £(s,u) =0

> Run Bellman-Ford from s, set h(u) = d(s, u)

> Remove s, run Dijkstra from every node u € V to get dp(u,v) for all u,v eV
> If want distances, set d(u,v) = dp(u,v) - h(u) + h(v) for all u,ve V

Correctness: From previous discussion.

Running Time: O(n) + O(mn) + O(n(m + nlog n)) = O(mn + n?log n)
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