Lecture 18: Minimum Spanning Trees

Michael Dinitz

October 30, 2025
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 18: MST October 30, 2025 1/16



Introduction

Definition
A spanning tree of an undirected graph G = (V, E) is a set of edges T € E such that (V, T)
is connected and acyclic.

Definition |
Minimum Spanning Tree problem (MST):
> |nput:

> Undirected graph G = (V, E)
> Edge weights w : E - R

> QOutput: Spanning tree minimizing w(T) =Y ..+ w(e).

Foundational problem in network design. Tons of applications.

Today: one “recipe”, two different algorithms from recipe. Main idea: greedy.

Michael Dinitz Lecture 18: MST October 30, 2025 2/16



Examples

Michael Dinitz Lecture 18: MST October 30, 2025 3/16



Generic Algorithm

Michael Dinitz Lecture 18: MST October 30, 2025 4 /16



Generic Greedy

Definition

Suppose that A is subset of some MST. If
Au {e} is also a subset of some MST,
then e is safe for A. )

Michael Dinitz Lecture 18: MST October 30, 2025 5/16



Generic Greedy

Definition

Suppose that A is subset of some MST. If
Au {e} is also a subset of some MST,
then e is safe for A. )

Generic-MST {
A=0
while(A not a spanning tree) {
find an edge e safe for A
A=Au{e}
}

return A

Michael Dinitz Lecture 18: MST October 30, 2025 5/16



Generic Greedy

Definition Theorem

Suppose that A is subset of some MST. If Generic-MST is correct: it always returns
Au {e} is also a subset of some MST, an MST.

then e is safe for A.

Generic-MST {
A=0
while(A not a spanning tree) {
find an edge e safe for A
A=Au{e}
}

return A

Michael Dinitz Lecture 18: MST October 30, 2025 5/16



Generic Greedy

Definition Theorem |
Suppose that A is subset of some MST. If Generic-MST is correct: it always returns
Au {e} is also a subset of some MST, an MST.
then e is safe for A. )
Proof. |
Generic-MST { Induction.
A=0 Claim: A always a subset of some MST.
while(A not a spanning tree) { Base case: v’
find an edge e safe for A Inductive step: v’ [
A=Au{e} "
h
return A

Michael Dinitz Lecture 18: MST October 30, 2025 5/16



Generic Greedy

Definition Theorem |
Suppose that A is subset of some MST. If Generic-MST is correct: it always returns
Au {e} is also a subset of some MST, an MST.
then e is safe for A. )
Proof. |
Generic-MST { Induction.
A=0 Claim: A always a subset of some MST.
while(A not a spanning tree) { Base case: v/
find an edge e safe for A Inductive step: v/ my
A=Au{e} /'
} But how to find a safe edge? And which
return A
) one to add?

Michael Dinitz Lecture 18: MST October 30, 2025 5/16



Structural Properties

Lemma

Let T be a spanning tree, let u,v € V, and let P be the u-v path in T. If {u,v} ¢ T, then
T'=(Tu{{u,v}})~{e} is a spanning tree for all e € P.

s

/ | r A U <
@ @ /// ’ \
A\ PN

Michael Dinitz Lecture 18: MST October 30, 2025 6/16




Structural Properties

Definition

A cut (S,V~S) (or (S,8) or just S) is a partition
of V into two parts. Edge e crosses cut (S, S) if e
has one endpoint in S and one endpoint in S.

v

\/\j
4

g~
77

Michael Dinitz Lecture 18: MST October 30, 2025 7/16



Structural Properties

Definition Definition

A cut (S,V~S) (or (S,8) or just S) is a partition | Cut (S,S) respects A ¢ E if no edge
of V into two parts. Edge e crosses cut (S,S) if e | in A crosses (S, S)
has one endpoint in S and one endpoint in S.

R @ @
7—1 1 s
> /} \é i

X

October 30, 2025 7/16

|

Michael Dinitz Lecture 18: MST



Structural Properties

Definition Definition

A cut (S,V~S) (or (S,8) or just S) is a partition | Cut (S,S) respects A € E if no edge
of V into two parts. Edge e crosses cut (S,S) if e | in A crosses (S, S)
has one endpoint in S and one endpoint in S.

s o X | @@

Definition
e is a light edge for (S, S) if e crosses (S, S) and w(e) = min_, crossing (S,5) w(e') J

Michael Dinitz Lecture 18: MST October 30, 2025 7/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (§,8). Then e is safe for A.

NS

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (§,8). Then e is safe for A.

Need to show there is an MST containing Au{e}.

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem
Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (§,8). Then e is safe for A.

Need to show there is an MST containing Au {e}.
feeT: v

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem
Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (§,8). Then e is safe for A.

Need to show there is an MST containing Au {e}.
If ee T: v Otherwise:

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (§,8). Then e is safe for A.

Need to show there is an MST containing Au{e}.
If ee T: v Otherwise:

Let T/ = (Tu{el) ~ {xy}} o T
== T’ a spanning tree by first lemma 5 J

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (§,8). Then e is safe for A.

Need to show there is an MST containing Au{e}.
If ee T: v Otherwise:

Let T/ = (Tu{el) ~ {xy}} o T
== T’ a spanning tree by first lemma 5 J

{x,y} ¢ A, since (S, S) respects A / ﬁ’

—> Au{e}c T’

s

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem
Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (§,8). Then e is safe for A.

Need to show there is an MST containing Au {e}.
If ee T: v Otherwise:

Let T'=(Tu{e})\{{x,y}} e Peth in T 7
== T’ a spanning tree by first lemma 5 J

{x,y} ¢ A, since (S, S) respects A / ﬁ’

—> Au{e}c T’

w(T’) =w(T)+w(e)-w(x,y) <w(T)

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (§,8). Then e is safe for A.

Need to show there is an MST containing Au{e}.
If ee T: v Otherwise:

Let T = (T u{e}) ~ {{x,y}}
== T’ a spanning tree by first lemma

{x,y} ¢ A, since (S, S) respects A
—> Au{e}c T’

w(T') =w(T)+w(e)-w(x,y) <w(T)
== T’ an MST containing Au{e}

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Prim’'s Algorithm

Michael Dinitz Lecture 18: MST October 30, 2025 9/16



Prim’'s Algorithm

|dea: start at arbitrary node u. Greedily grow MST out of u.

A=g

Let u be an arbitrary node, and let S = {u}

while(A is not a spanning tree) { _
Find an edge {x,y} with x € S and y ¢ S that is light for (S, S)

A< Au{{x,y}}
S« Su{y}

}

return A

Michael Dinitz Lecture 18: MST October 30, 2025 10/16



Prim’'s Algorithm

|dea: start at arbitrary node u. Greedily grow MST out of u.

A=g

Let u be an arbitrary node, and let S = {u}

while(A is not a spanning tree) { _
Find an edge {x,y} with x € S and y ¢ S that is light for (S, S)

A< Au{{x,y}}
S« Su{y}

}

return A

Michael Dinitz Lecture 18: MST October 30, 2025 10/16



Correctness

Prim’s algorithm returns an MST.

Theorem J

Michael Dinitz Lecture 18: MST October 30, 2025 11/16



Correctness

Theorem

Prim’s algorithm returns an MST.

Proof.
Just Generic-MST!

Michael Dinitz Lecture 18: MST October 30, 2025 11/16



Correctness

Theorem
Prim’s algorithm returns an MST. J

Proof.
Just Generic-MST!

> (S, S) always respects A (induction).
> If edge e added then light for (S, S)

» Hence e safe for A by main structural theorem.

Michael Dinitz Lecture 18: MST October 30, 2025 11/16



Running Time
Trivial analysis:
> Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (S,S) =—
O(m) time
> Total O(mn)

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
> Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (S,S) =—
O(m) time
> Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
> Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (S,S) =—
O(m) time

> Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!
> Need to be able to get minimum-weight edge across (S,§)

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
> Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (S,S) =—
O(m) time

> Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!
> Need to be able to get minimum-weight edge across (S,§)

Heap of vertices in §. Key of v is min-weight edge from v to S.

7
el s

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:

> Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (S,S) =—

O(m) time
> Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!
> Need to be able to get minimum-weight edge across (S,§)

Heap of vertices in §. Key of v is min-weight edge from v to S.
» When new vertex y

d to S, need to update keys of nodes adjacent to y

Michael Dinitz Lecture 18: MST October 30, 2025

12/16



Running Time
Trivial analysis:
> Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (S,S) =—
O(m) time

> Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!
> Need to be able to get minimum-weight edge across (S,§)

Heap of vertices in §. Key of v is min-weight edge from v to S.

> When new vertex y added to S, need to update keys of nodes adjacent to y
» Happens at most m times total

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
> Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (S,S) =—
O(m) time

> Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!
> Need to be able to get minimum-weight edge across (S,§)

Heap of vertices in §. Key of v is min-weight edge from v to S.

> When new vertex y added to S, need to update keys of nodes adjacent to y
» Happens at most m times total

> n Inserts, n Extract-Mins, m Decrease-Keys

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
> Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (S,S) =—
O(m) time

> Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!
> Need to be able to get minimum-weight edge across (S,§)

Heap of vertices in §. Key of v is min-weight edge from v to S.

> When new vertex y added to S, need to update keys of nodes adjacent to y
» Happens at most m times total

> n Inserts, n Extract-Mins, m Decrease-Keys

> Like Dijkstra, O(mlog n) using binary heap. O(m + nlog n) with Fibonacci heap (only
Extract-Min is logarithmic)

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Kruskal's Algorithm

Michael Dinitz Lecture 18: MST October 30, 2025 13/16



Algorithm

Intuition: can we be even greedier than Prim’s Algorithm?

Michael Dinitz Lecture 18: MST October 30, 2025 14 /16



Algorithm

Intuition: can we be even greedier than Prim’s Algorithm?

A=g
Sort edges by weight (small to large)
For each edge e in this order {

if Au{e} has no cycles, A= Au{e}
}

return A

Michael Dinitz Lecture 18: MST October 30, 2025 14 /16



Correctness

Theorem
Kruskal's algorithm computes an MST. J

Want to show just Generic-MST: when {u, v} added, it was safe for A.

Michael Dinitz Lecture 18: MST October 30, 2025 15/16



Correctness

Theorem
Kruskal's algorithm computes an MST. J

Want to show just Generic-MST: when {u, v} added, it was safe for A.

Michael Dinitz Lecture 18: MST October 30, 2025 15/16



Correctness

Theorem
Kruskal's algorithm computes an MST. J

Want to show just Generic-MST: when {u, v} added, it was safe for A.
(T ) O
“n

Consider cut (C, C). Respects A, and {u, v} light for it.

Michael Dinitz Lecture 18: MST October 30, 2025 15/16



Correctness

Theorem
Kruskal's algorithm computes an MST. J

Want to show just Generic-MST: when {u, v} added, it was safe for A.
“n

Consider cut (C, C). Respects A, and {u, v} light for it.
Main structural theorem = {u, v} safe for A

Michael Dinitz Lecture 18: MST October 30, 2025 15/16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m+ n)) = O(m? + mn)

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

> O(m(m+n)) = O(m? + mn)

5”»06& . ]
Can we speak this up with data structures?

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

> O(m(m+n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

> O(m(m+n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
> Make-Sets:

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

> O(m(m+n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
> Make-Sets: n

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

> O(m(m+n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
> Make-Sets: n
> Finds:

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

> O(m(m+n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
> Make-Sets: n
> Finds: 2m

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

> O(m(m+n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
> Make-Sets: n
> Finds: 2m

» Unions:

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

> O(m(m+n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
> Make-Sets: n
> Finds: 2m

» Unions: n-1

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

> O(m(m+n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
> Make-Sets: n
> Finds: 2m
> Unions: n-1

O(mlog™ n) using union-by-rank + path compression
O(m + nlog n) using list data structure

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

> O(m(m+n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
> Make-Sets: n
> Finds: 2m
> Unions: n-1

O(mlog™ n) using union-by-rank + path compression

O(m + nlog n) using list data structure

Sorting dominates! O(mlog n) total.

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



