
Lecture 18: Minimum Spanning Trees

Michael Dinitz

October 30, 2025
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 18: MST October 30, 2025 1 / 16



Introduction

Definition

A spanning tree of an undirected graph G = (V ,E) is a set of edges T ⊆ E such that (V ,T)
is connected and acyclic.

Definition

Minimum Spanning Tree problem (MST):
▸ Input:

▸ Undirected graph G = (V ,E)
▸ Edge weights w ∶ E → R≥0

▸ Output: Spanning tree minimizing w(T) = ∑e∈T w(e).

Foundational problem in network design. Tons of applications.

Today: one “recipe”, two different algorithms from recipe. Main idea: greedy.
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Examples
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Generic Algorithm
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Generic Greedy

Definition

Suppose that A is subset of some MST. If
A ∪ {e} is also a subset of some MST,
then e is safe for A.

Generic-MST {
A = ∅
while(A not a spanning tree) {

find an edge e safe for A
A = A ∪ {e}

}
return A

}

Theorem

Generic-MST is correct: it always returns
an MST.

Proof.

Induction.

Claim: A always a subset of some MST.
Base case: ✓
Inductive step: ✓

But how to find a safe edge? And which
one to add?
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Structural Properties

Lemma

Let T be a spanning tree, let u,v ∈ V , and let P be the u − v path in T . If {u,v} /∈ T , then
T ′ = (T ∪ {{u,v}}) ∖ {e} is a spanning tree for all e ∈ P.

How to find a safe edge and which one
to choose

Need some structural properties

Lemmy Let T be a spanning t ee une V

P the n u path in T

If G ul ET then T Tullus Hel is
a spanning tree f all EEP

E
Ir
I

a xN d

s
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Structural Properties

Definition

A cut (S,V ∖S) (or (S, S̄) or just S) is a partition
of V into two parts. Edge e crosses cut (S, S̄) if e
has one endpoint in S and one endpoint in S̄ .

Csis
Def A cat s vis is partition of vertices

into two pieces Edge e crises cut if

one endpoint in S other in us

Def 5,5 respects AEE if no edge

in A crosses 5,5

0 0
s T

Reti e is a light edge for 4,5 if

1 e crosses 15,57 and
2 wle min

e'crossing isg
ie'll

Definition

Cut (S, S̄) respects A ⊆ E if no edge
in A crosses (S, S̄)

Csis
Def A cat s vis is partition of vertices

into two pieces Edge e crises cut if

one endpoint in S other in us

Def 5,5 respects AEE if no edge

in A crosses 5,5

0 0
s T

Reti e is a light edge for 4,5 if

1 e crosses 15,57 and
2 wle min

e'crossing isg
ie'll

Definition

e is a light edge for (S, S̄) if e crosses (S, S̄) and w(e) =mine′ crossing (S,S̄)w(e ′)
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Main Structural Theorem

Theorem

Let A ⊆ E be a subset of some MST T , let (S, S̄) be a cut respecting A, and let e = {u,v}
be a light edge for (S, S̄). Then e is safe for A.

Need to show there is an MST containing A ∪ {e}.
If e ∈ T : ✓ Otherwise:

Let T ′ = (T ∪ {e}) ∖ {{x,y}}
Ô⇒ T ′ a spanning tree by first lemma

{x,y} /∈ A, since (S, S̄) respects A
Ô⇒ A ∪ {e} ⊆ T ′

Thg Let A EE be subset of sane MST T

let 15,5 cut respecting A let

e u u light edge for CITI
Then e is safe for A

PI Need to show there is an MST containing

AV Ie

If eet done

Otherwise

u Path Pint
d

Let T Tulln uDl Ex yl
spanning tree by first lemna

w(T ′) = w(T) +w(e) −w(x,y) ≤ w(T)
Ô⇒ T ′ an MST containing A ∪ {e}
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Prim’s Algorithm
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Prim’s Algorithm

Idea: start at arbitrary node u. Greedily grow MST out of u.

A = ∅
Let u be an arbitrary node, and let S = {u}
while(A is not a spanning tree) {

Find an edge {x,y} with x ∈ S and y /∈ S that is light for (S, S̄)
A← A ∪ {{x,y}}
S ← S ∪ {y}

}
return A
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Correctness

Theorem

Prim’s algorithm returns an MST.

Proof.

Just Generic-MST!

▸ (S, S̄) always respects A (induction).

▸ If edge e added then light for (S, S̄)
▸ Hence e safe for A by main structural theorem.
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Running Time
Trivial analysis:

▸ Every spanning tree has n − 1 edges Ô⇒ n − 1 iterations

▸ In each iteration, look through all edges to find min-weight edge crossing (S, S̄) Ô⇒
O(m) time

▸ Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!

▸ Need to be able to get minimum-weight edge across (S, S̄)
Heap of vertices in S̄ . Key of v is min-weight edge from v to S .
▸ When new vertex y added to S , need to update keys of nodes adjacent to y

▸ Happens at most m times total

▸ n Inserts, n Extract-Mins, m Decrease-Keys

▸ Like Dijkstra, O(m logn) using binary heap. O(m + n logn) with Fibonacci heap (only
Extract-Min is logarithmic)
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Kruskal’s Algorithm
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Algorithm

Intuition: can we be even greedier than Prim’s Algorithm?

A = ∅
Sort edges by weight (small to large)
For each edge e in this order {

if A ∪ {e} has no cycles, A = A ∪ {e}
}
return A
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Correctness

Theorem

Kruskal’s algorithm computes an MST.

Want to show just Generic-MST: when {u,v} added, it was safe for A.

The Kruskal's alg computes au MST

PI LTS just Leneric MST

WTS when 9am added it was safe

for A

O
O O

k v light for CC El
Consider cut (C , C̄). Respects A, and {u,v} light for it.
Main structural theorem Ô⇒ {u,v} safe for A
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Running Time

Sorting edges: O(m logm) = O(m logn)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

▸ O(m(m + n)) = O(m2 +mn)

Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.

▸ Make-Sets: n
▸ Finds: 2m
▸ Unions: n − 1

O(m log∗ n) using union-by-rank + path compression
O(m + n logn) using list data structure

Sorting dominates! O(m logn) total.
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