Lecture 18: Minimum Spanning Trees

Michael Dinitz

October 30, 2025
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 18: MST October 30, 2025

1/16



Introduction

Definition

A spanning tree of an undirected graph G = (V, E) is a set of edges T € E such that (V, T)

is connected and acyclic.

Definition
Minimum Spanning Tree problem (MST):
> Input:

> Undirected graph G = (V, E)
> Edge weights w: E - Ryp

» Qutput: Spanning tree minimizing w(T) = ¥ .7 w(e).

Foundational problem in network design. Tons of applications.

Today: one “recipe”, two different algorithms from recipe. Main idea: greedy.

Michael Dinitz Lecture 18: MST October 30, 2025

2/16



Examples

Michael Dinitz Lecture 18: MST October 30, 2025 3/16



Generic Algorithm

Michael Dinitz Lecture 18: MST October 30, 2025 4/16



Generic Greedy

Definition

Suppose that A is subset of some MST. If
Au{e} is also a subset of some MST,
then e is safe for A.

Michael Dinitz Lecture 18: MST October 30, 2025 5/16



Generic Greedy

Definition

Suppose that A is subset of some MST. If
Au{e} is also a subset of some MST,
then e is safe for A.

Generic-MST {
A=g
while(A not a spanning tree) {
find an edge e safe for A
A=Au{e}
}

return A

Michael Dinitz Lecture 18: MST October 30, 2025 5/16



Generic Greedy

Definition Theorem
Suppose that A is subset of some MST. If Generic-MST is correct: it always returns
Au{e} is also a subset of some MST, an MST.

then e is safe for A.

Generic-MST {
A=g
while(A not a spanning tree) {
find an edge e safe for A
A=Au{e}
}

return A

Michael Dinitz Lecture 18: MST October 30, 2025 5/16



Generic Greedy

Definition

Suppose that A is subset of some MST. If
Au{e} is also a subset of some MST,
then e is safe for A.

Generic-MST {
A=g
while(A not a spanning tree) {
find an edge e safe for A
A=Au{e}
}

return A

Michael Dinitz

Lecture 18: MST

Theorem

Generic-MST is correct: it always returns
an MST.

Proof.
Induction.
Claim: A always a subset of some MST.

Base case: v*
Inductive step: v/ 0J

v

October 30, 2025 5/16



Generic Greedy

Definition

Suppose that A is subset of some MST. If
Au{e} is also a subset of some MST,
then e is safe for A.

Generic-MST {
A=g
while(A not a spanning tree) {
find an edge e safe for A
A=Au{e}
}

return A

Michael Dinitz

Lecture 18: MST

Theorem

Generic-MST is correct: it always returns
an MST.

Proof.
Induction.
Claim: A always a subset of some MST.

Base case: v*
Inductive step: v/ 0J

v

But how to find a safe edge? And which
one to add?

October 30, 2025

5/16



Structural Properties

Lemma

Let T be a spanning tree, let u,v € V, and let P be the u—v path in T. If {u,v} ¢ T, then
T =(Tu{{u,v}})~{e} is a spanning tree for all e € P.

Michael Dinitz Lecture 18: MST October 30, 2025 6/16



Structural Properties

Definition

A cut (S§,V~S) (or (S,5) or just S) is a partition
of V into two parts. Edge e crosses cut (S,_S) if e
has one endpoint in S and one endpoint in S.

\/\5

Y f
»

Michael Dinitz Lecture 18: MST

October 30, 2025

7/16



Structural Properties

Definition Definition
A cut (S§,V~S) (or (S,5) or just S) is a partition | Cut (S,5) respects A € E if no edge
of V into two parts. Edge e crosses cut (S,S) if e | in A crosses (S,S)

has one endpoint in S and one endpoint in S.

B ¥
s 7

Y f
A

Michael Dinitz Lecture 18: MST October 30, 2025 7/16



Structural Properties

Definition Definition
A cut (S§,V~S) (or (S,5) or just S) is a partition | Cut (S,5) respects A € E if no edge
of V into two parts. Edge e crosses cut (S,S) if e | in A crosses (S,S)

has one endpoint in S and one endpoint in S.

W @/@
Y ft s
>

Definition
e is a light edge for (S, S) if e crosses (S,S) and w(e) = min,, crossing (5,5) W(€') ‘

Michael Dinitz Lecture 18: MST October 30, 2025 7/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (S,S). Then e is safe for A.

Michael Dinitz Lecture 18: MST

October 30, 2025 8/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (S,S). Then e is safe for A.

Need to show there is an MST containing Au {e}.

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (S,S). Then e is safe for A.

Need to show there is an MST containing Au {e}.
lfeeT: v

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (S,S). Then e is safe for A.

Need to show there is an MST containing Au {e}.
If ee T: v Otherwise:

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (S,S). Then e is safe for A.

Need to show there is an MST containing Au {e}.
If ee T: v Otherwise:

Let T'= (T u{e})\{{x,y}} o bt HnT T
== T’ a spanning tree by first lemma ! J

I

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (S,S). Then e is safe for A.

Need to show there is an MST containing Au {e}.
If ee T: v Otherwise:

Let T'= (T u{e})\{{x,y}} o bt HnT T
== T’ a spanning tree by first lemma ! J

{x,y} ¢ A, since (S,5) respects A / >
= Au{e}cT

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (S,S). Then e is safe for A.

Need to show there is an MST containing Au {e}.
If ee T: v Otherwise:

Let T"=(Tu{e})~{{x,y}} v feth PAT
== T’ a spanning tree by first lemma ! J

{x,y} ¢ A, since (S,5) respects A / >
= Au{e}cT

w(T') =w(T)+w(e)-w(x,y) <w(T)

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Main Structural Theorem

Theorem

Let Ac E be a subset of some MST T, let (S, S) be a cut respecting A, and let e = {u, v}
be a light edge for (S,S). Then e is safe for A.

Need to show there is an MST containing Au {e}.
If ee T: v Otherwise:

Let T'= (T u{e})\{{x,y}} o bt HnT T
== T’ a spanning tree by first lemma ! J

{x,y} ¢ A, since (S,5) respects A / >
= Au{e}cT

w(T') = w(T)+w(e) -w(x,y) <w(T)
== T’ an MST containing Au{e}

Michael Dinitz Lecture 18: MST October 30, 2025 8/16



Prim's Algorithm

Michael Dinitz Lecture 18: MST October 30, 2025 9/16



Prim's Algorithm

Idea: start at arbitrary node u. Greedily grow MST out of u.

A=g

Let u be an arbitrary node, and let S = {u}

while(A is not a spanning tree) {
Find an edge {x,y} with x € S and y ¢ S that is light for (S, S)
A< Au{{x,y}}
S<Su{y}

}

return A

Michael Dinitz Lecture 18: MST October 30, 2025 10/ 16



Prim's Algorithm

2
: <1
Idea: start at arbitrary node u. Greedily grow MST out of u.

A=g

Let u be an arbitrary node, and let S = {u}

while(A is not a spanning tree) {
Find an edge {x,y} with x € S and y ¢ S that is light for (S, S)
A< Au{{x,y}}
S<Su{y}

}

return A

Michael Dinitz Lecture 18: MST October 30, 2025 10/ 16



Correctness

Theorem J

Prim’s algorithm returns an MST.

Michael Dinitz Lecture 18: MST October 30, 2025 11/16



Correctness

Theorem

Prim’s algorithm returns an MST.

Proof.
Just Generic-MST!

Michael Dinitz

Lecture 18: MST

October 30, 2025

11/16



Correctness

Theorem

Prim’s algorithm returns an MST.

Proof.

Just Generic-MST!
» (S, S) always respects A (induction).
> If edge e added then light for (S, S)

» Hence e safe for A by main structural theorem.

Michael Dinitz Lecture 18: MST

October 30, 2025

11/16



Running Time
Trivial analysis:
» Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (5,5) =—
O(m) time
» Total O(mn)

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
» Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (5,5) =—
O(m) time
» Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
» Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (5,5) =—
O(m) time
» Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!

» Need to be able to get minimum-weight edge across (S, S)

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
» Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (5,5) =—
O(m) time

» Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!
» Need to be able to get minimum-weight edge across (S, S)

Heap of vertices in §. Key of v is min-weight edge from v to S.

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
» Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (5,5) =—
O(m) time

» Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!
» Need to be able to get minimum-weight edge across (S, S)
Heap of vertices in §. Key of v is min-weight edge from v to S.
» When new vertex y added to S, need to update keys of nodes adjacent to y

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
» Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (5,5) =—
O(m) time

» Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!
» Need to be able to get minimum-weight edge across (S, S)
Heap of vertices in §. Key of v is min-weight edge from v to S.

» When new vertex y added to S, need to update keys of nodes adjacent to y
» Happens at most m times total

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
» Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (5,5) =—
O(m) time

» Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!
» Need to be able to get minimum-weight edge across (S, S)
Heap of vertices in §. Key of v is min-weight edge from v to S.

» When new vertex y added to S, need to update keys of nodes adjacent to y
» Happens at most m times total

> n Inserts, n Extract-Mins, m Decrease-Keys

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Running Time
Trivial analysis:
» Every spanning tree has n-1 edges = n -1 iterations

» In each iteration, look through all edges to find min-weight edge crossing (5,5) =—
O(m) time

» Total O(mn)

Like Dijkstra’s algorithm, do better by using a data structure: heap!
» Need to be able to get minimum-weight edge across (S, S)
Heap of vertices in §. Key of v is min-weight edge from v to S.

» When new vertex y added to S, need to update keys of nodes adjacent to y
» Happens at most m times total

> n Inserts, n Extract-Mins, m Decrease-Keys

» Like Dijkstra, O(mlog n) using binary heap. O(m + nlog n) with Fibonacci heap (only
Extract-Min is logarithmic)

Michael Dinitz Lecture 18: MST October 30, 2025 12/16



Kruskal's Algorithm

Michael Dinitz Lecture 18: MST October 30, 2025 13 /16



Algorithm

Intuition: can we be even greedier than Prim's Algorithm?

Michael Dinitz Lecture 18: MST October 30, 2025 14 /16



Algorithm

Intuition: can we be even greedier than Prim's Algorithm?

A=g
Sort edges by weight (small to large)
For each edge e in this order {

if Au{e} has no cycles, A= Au{e}
}

return A

Michael Dinitz Lecture 18: MST October 30, 2025 14 /16



Correctness

Theorem

Kruskal’s algorithm computes an MST.

Want to show just Generic-MST: when {u, v} added, it was safe for A.

Michael Dinitz Lecture 18: MST

October 30, 2025 15 /16



Correctness

Theorem

Kruskal’s algorithm computes an MST.

Want to show just Generic-MST: when {u, v} added, it was safe for A.

() O
o O

Michael Dinitz Lecture 18: MST

October 30, 2025 15 /16



Correctness

Theorem

Kruskal’s algorithm computes an MST.

Want to show just Generic-MST: when {u, v} added, it was safe for A.
(T ; ()
("N
Consider cut (C, C). Respects A, and {u, v} light for it.

Michael Dinitz Lecture 18: MST

October 30, 2025 15 /16



Correctness

Theorem

Kruskal’s algorithm computes an MST.

Want to show just Generic-MST: when {u, v} added, it was safe for A.
(T ) O
("N

Consider cut (C, C). Respects A, and {u, v} light for it.
Main structural theorem == {u, v} safe for A

Michael Dinitz Lecture 18: MST

October 30, 2025 15 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

Michael Dinitz Lecture 18: MST

October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m+n)) = O(m? + mn)

Michael Dinitz Lecture 18: MST

October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m+n)) = O(m? + mn)

Can we speak this up with data structures?

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m +n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m +n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
» Make-Sets:

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m +n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
» Make-Sets: n

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m +n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
» Make-Sets: n
» Finds:

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m +n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
» Make-Sets: n

» Finds: 2m

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m +n)) = O(m? + mn)

Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
» Make-Sets: n
» Finds: 2m

» Unions:

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m +n)) = O(m? + mn)

Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
» Make-Sets: n
» Finds: 2m

» Unions: n-1

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m +n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
» Make-Sets: n
» Finds: 2m
» Unions: n-1

O(mlog™ n) using union-by-rank + path compression
O(m + nlog n) using list data structure

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



Running Time

Sorting edges: O(mlog m) = O(mlog n)
Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already
connected.

» O(m(m +n)) = O(m? + mn)
Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.
» Make-Sets: n
» Finds: 2m
» Unions: n-1
O(mlog™ n) using union-by-rank + path compression
O(m + nlog n) using list data structure

Sorting dominates! O(mlog n) total.

Michael Dinitz Lecture 18: MST October 30, 2025 16 /16



