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Introduction

Last time: somewhat greedy algorithm (Prim’s), extremely greedy algorithm (Kruskal's)

Question: when does greedy algorithm return optimal solution?
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Introduction

Last time: somewhat greedy algorithm (Prim’s), extremely greedy algorithm (Kruskal's)

Question: when does greedy algorithm return optimal solution?

Want abstraction that includes MSTs, but also works for many other problems.

Weighted Set System:
> Universe U
» Collection Z c2Y (so I c U for all I € T). Called independent sets
> Weights w: U - R
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Introduction

Last time: somewhat greedy algorithm (Prim’s), extremely greedy algorithm (Kruskal's)

Question: when does greedy algorithm return optimal solution?

Want abstraction that includes MSTs, but also works for many other problems.

Weighted Set System:

> Universe U
» Collection Z c2Y (so I c U for all I € T). Called independent sets

> Weights w: U - R

Problem: find max weight independent set
’ - /Z e [
(9 E=l)
C{
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MST as Weighted Set System
MST: weighted graph G = (V,E,w). Find MST.

Set system:
> U:E
» Z={FcE:(V,F) a forest}

Michael Dinitz Lecture 19: Matroids and Greedy November 4, 2025 3/12



MST as Weighted Set System
MST: weighted graph G = (V,E,w). Find MST.

Set system:
> U:E
» Z={FcE:(V,F) a forest}

What about weights? MST is minimize, but problem we defined is maximize.
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MST as Weighted Set System
MST: weighted graph G = (V,E,w). Find MST.
Set system:
» U=E
» Z={FcE:(V,F) a forest}
What about weights? MST is minimize, but problem we defined is maximize.

> Let w > w(e) for all ee E, let w'(e) =w - w(e) for all ec E
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MST as Weighted Set System

MST: weighted graph G = (V,E,w). Find MST.

Set system:
» U=E
» Z={FcE:(V,F) a forest}

What about weights? MST is minimize, but problem we defined is maximize.
> Let w > w(e) for all ee E, let w'(e) =w - w(e) for all ec E

For any tree T:

w (T)=) wi(e)=)Y (w-w(e))=) w-) w(e)=(n-1)w-w(T)

eeT eeT eeT eecT
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MST as Weighted Set System

MST: weighted graph G = (V,E,w). Find MST.

Set system:
» U=E
» Z={FcE:(V,F) a forest}

What about weights? MST is minimize, but problem we defined is maximize.
> Let w > w(e) for all ee E, let w'(e) =w - w(e) for all ec E

For any tree T:

w (T)=) wi(e)=)Y (w-w(e))=) w-) w(e)=(n-1)w-w(T)

eeT eeT eeT eecT

So under weights w’, max-weight IS = max-weight forest = max-weight spanning tree =
min-weight spanning tree (weights w)

> So finding max-weight forest = finding min spanning tree.
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Useful Properties of Forests
Let U=E and Z={Fc E:(V,F) a forest}

Useful properties:
1. gel
2. f FeZ and F"c F,then F'eT
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Useful Properties of Forests
Let U=E and Z={Fc E:(V,F) a forest}
Useful properties:

1. ged

2. f FeZ and F"c F,then F'eT

3. Augmentation Property: If Fy € Z and F; € Z with |F| > |Fy|, then there is some edge
e € F> \ F{ such that Fj u {e} el.

)é‘/
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Useful Properties of Forests
Let U=E and Z={Fc E:(V,F) a forest}
Useful properties:

1. el
2. f FeZ and F"c F,then F'eT

3. Augmentation Property: If Fy € Z and F; € Z with |F| > |Fy|, then there is some edge

e € F> \ F{ such that Fj u {e} el.

Proof Sketch that Forests have Augmentation Property.

Suppose false: no edge in Fo \ F; can be added to F;. Let ¢; = # components in F1, ¢ = #

components in Fy
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Useful Properties of Forests
Let U=E and Z={Fc E:(V,F) a forest}

Useful properties: O U

1. gel

2. f FeZ and F"c F,then F'eT O

3. Augmentation Property: If F; € Z and Fp € Z with |F2| > |F1|, then there is some edge
e € F> \ F{ such that Fj u {e} el.

Proof Sketch that Forests have Augmentation Property.

Suppose false: no edge in Fo \ F; can be added to F;. Let ¢; = # components in F1, ¢ = #
components in Fy
—=> every edge of Fy has both endpoints in same component of Fq
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Useful Properties of Forests
Let U=E and Z={Fc E:(V,F) a forest}

Useful properties:
1. gel
2. f FeZ and F"c F,then F'eT

3. Augmentation Property: If Fy € Z and F; € Z with |F| > |Fy|, then there is some edge
e € F> \ F{ such that Fj u {e} el.

Proof Sketch that Forests have Augmentation Property.

Suppose false: no edge in Fo \ F; can be added to F;. Let ¢; = # components in F1, ¢ = #
components in Fy

—=> every edge of Fy has both endpoints in same component of Fq

== every component of F> contained in component of F; = ¢ >
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Useful Properties of Forests
Let U=E and Z={Fc E:(V,F) a forest}

Useful properties:
1. gel
2. f FeZ and F"c F,then F'eT

3. Augmentation Property: If Fy € Z and F; € Z with |F| > |Fy|, then there is some edge
e € F> \ F{ such that Fj u {e} el.

Proof Sketch that Forests have Augmentation Property.

Suppose false: no edge in Fo \ F; can be added to F;. Let ¢; = # components in F1, ¢ = #
components in Fy

—=> every edge of Fy has both endpoints in same component of Fq

== every component of F> contained in component of F; = ¢ >

But ¢ = n- |F2| <n- |F1| = C].
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Useful Properties of Forests
Let U=E and Z={Fc E:(V,F) a forest}

Useful properties:
1. gel
2. f FeZ and F"c F,then F'eT

3. Augmentation Property: If Fy € Z and F; € Z with |F| > |Fy|, then there is some edge
e € F> \ F{ such that Fj u {e} el.

Proof Sketch that Forests have Augmentation Property.

Suppose false: no edge in Fo \ F; can be added to F;. Let ¢; = # components in F1, ¢ = #
components in Fy

—=> every edge of Fy has both endpoints in same component of Fq

== every component of F> contained in component of F; = ¢ >

But ¢ = n- |F2| <n- |F1| = C].

Contradiction. ]
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Matroids

Definition

(U,Z) is a matroid if the following three properties hold:
1. geZ,
2. f FeZ and F'c F, then F' e Z, and

3. If F; € Z and Fy € Z with |F| > |F1|, then there is some element e € F> N F; such that
F1 U {e} el.
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Matroids

Definition

(U,Z) is a matroid if the following three properties hold:
1. geZ,
2. f FeZ and F'c F, then F' e Z, and

3. If F; € Z and Fy € Z with |F| > |F1|, then there is some element e € F> N F; such that
F1 U {e} el.

(U,Z) is a hereditary set system if the first two properties hold.
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Matroids

Definition

(U,Z) is a matroid if the following three properties hold:
1. geZ,
2. f FeZ and F'c F, then F' e Z, and

3. If F; € Z and Fy € Z with |F| > |F1|, then there is some element e € F> N F; such that
F1 U {e} el.

(U,Z) is a hereditary set system if the first two properties hold.

Matroid theory: super interesting area of combinatorics! Surprising amount of structure.
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Matroids @

Definition

(U,Z) is a matroid if the following three properties hold:
1. geZ,
2. f FeZ and F'c F, then F' e Z, and

3. If F; € Z and Fy € Z with |F| > |F1|, then there is some element e € F> N F; such that
F1 U {e} el.

(U,Z) is a hereditary set system if the first two properties hold.
Matroid theory: super interesting area of combinatorics! Surprising amount of structure.

Warmup: In any matroid, the maximal independent sets (called bases) have the same size
(called the rank of the matroid).
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Examples of Matroids

» Forests in graphs
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Examples of Matroids

» Forests in graphs

» Linearly independent vectors in vector space

» U a finite set of vectors in RY
» T ={F c U:F linearly independent}
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Examples of Matroids

» Forests in graphs

» Linearly independent vectors in vector space
> U a finite set of vectors in RY
» T ={F c U:F linearly independent}
> & linearly independent
> If F linearly independent and F’ € F, then F’ linearly independent
> Augmentation: if Fy linearly independent, F; linearly independent, and |F;| > |F1| =
dim(span(Fy1)) = |F1| < |F2| = dim(span(F3))
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Examples of Matroids

» Forests in graphs

» Linearly independent vectors in vector space

> U a finite set of vectors in RY

» T ={F c U:F linearly independent}

> & linearly independent

> If F linearly independent and F’ € F, then F’ linearly independent

> Augmentation: if Fy linearly independent, F; linearly independent, and |F;| > |F1| =
dim(span(Fy1)) = |F1| < |F2| = dim(span(F3))

Matroids: generalize both graph theory and linear algebral

> Originally invented by Whitney as an attempt to generalize the concept of “linear
independence”
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Representation

To do algorithms with matroids, need to figure out how they're represented.
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Option 1: list all independent sets
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Representation

To do algorithms with matroids, need to figure out how they're represented.

Option 1: list all independent sets

» Too many of them!

What did we need for MST (Kruskal)?
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Representation

To do algorithms with matroids, need to figure out how they're represented.

Option 1: list all independent sets

» Too many of them!

What did we need for MST (Kruskal)?

Independence Oracle: algorithm which take F € U, returns YES if FeZ, NO if F¢T
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Representation

To do algorithms with matroids, need to figure out how they're represented.

Option 1: list all independent sets

» Too many of them!

What did we need for MST (Kruskal)?

Independence Oracle: algorithm which take F € U, returns YES if FeZ, NO if F¢T
For MST: “does F have any cycles”? Independence oracle: DFS/BFS, union-find
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Representation

To do algorithms with matroids, need to figure out how they're represented.

Option 1: list all independent sets

» Too many of them!

What did we need for MST (Kruskal)?

Independence Oracle: algorithm which take F € U, returns YES if FeZ, NO if F¢T
For MST: “does F have any cycles”? Independence oracle: DFS/BFS, union-find

We'll assume we have independence oracle.
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Greedy Algorithm

Kruskal, generalized to matroids (and max weight)!
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Greedy Algorithm

Kruskal, generalized to matroids (and max weight)!

F=g
Sort U by weight (largest to smallest)

For each u € U in sorted order {
If Fu{u}eZ, add u to F
}

Return F
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Correctness

Theorem
Let F be independent set returned by greedy. Then w(F) > w(F") for all F' € T. J
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Correctness

Theorem
Let F be independent set returned by greedy. Then w(F) > w(F") for all F' € T. J

» F={f,h,...,f}, where w(f;) > w(F,1) for all i (order added by greedy)

> F'={e1,ey,...,e} where w(e;) > w(ej,1) for all i
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Correctness

Theorem
Let F be independent set returned by greedy. Then w(F) > w(F") for all F' € T. J

» F={f,h,...,f}, where w(F;) > w(f; 1) for all i (order added by greedy)
> F'={e1,ey,...,e} where w(e;) > w(ej,1) for all i
Claim: w(f;) > w(e;) for all i.
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Correctness

Theorem
Let F be independent set returned by greedy. Then w(F) > w(F") for all F' € T. J

» F={f,h,...,f}, where w(F;) > w(f; 1) for all i (order added by greedy)
> F'={e1,ey,...,e} where w(e;) > w(ej,1) for all i
Claim: w(f;) > w(e;) for all i.

Proof: Suppose false, let j smallest integer such that w(f;) < w(ej).
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Correctness

Theorem
Let F be independent set returned by greedy. Then w(F) > w(F') for all F' € T.

» F={f,h,...,f}, where w(f;) > w(F,1) for all i (order added by greedy)
> F'={e1,ey,...,e} where w(e;) > w(ej,1) for all i
Claim: w(f;) > w(e;) for all i.

Proof: Suppose false, let j smallest integer such that w(f;) < w(ej).
Let F7 = {f],...,fj.'_l} and let Fp = {el,...,ej}
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Correctness

Theorem
Let F be independent set returned by greedy. Then w(F) > w(F') for all F' € T.

» F={f,h,...,f}, where w(f;) > w(F,1) for all i (order added by greedy)
> F'={e1,ey,...,e} where w(e;) > w(ej,1) for all i

Claim: w(f;) > w(e;) for all i.

Proof: Suppose false, let j smallest integer such that w(f;) < w(ej).

Let F1 ={h,...,fi_1} and let Fp = {eyq,..., €]}

|F2| > |F1|, so by augmentation there is some e, € F» ~ Fj such that Fu{e,} € Z.
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Correctness

Theorem
Let F be independent set returned by greedy. Then w(F) > w(F') for all F' € T.

» F={f,h,...,f}, where w(f;) > w(F,1) for all i (order added by greedy)
> F'={e1,ey,...,e} where w(e;) > w(ej,1) for all i
Claim: w(f;) > w(e;) for all i.

Proof: Suppose false, let j smallest integer such that w(f;) < w(ej).
Let F7 = {f],...,fj.'_l} and let Fp = {el,...,ej}
|F2| > |F1|, so by augmentation there is some e, € F» ~ Fj such that Fu{e,} € Z.

w(e;) > w(ej) > w(f;)
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Correctness

Theorem
Let F be independent set returned by greedy. Then w(F) > w(F') for all F' € T.

» F={f,h,...,f}, where w(f;) > w(F,1) for all i (order added by greedy)
> F'={e1,ey,...,e} where w(e;) > w(ej,1) for all i
Claim: w(f;) > w(e;) for all i.

Proof: Suppose false, let j smallest integer such that w(f;) < w(ej).
Let F7 = {ﬁ.?"'?f_}—l} and let Fp = {el,...,ej}
|F2| > |F1|, so by augmentation there is some e, € F» ~ Fj such that Fu{e,} € Z.

w(e;) > w(ej) > w(f;)
Contradiction! Greedy would add e, next, not ;.

Michael Dinitz Lecture 19: Matroids and Greedy November 4, 2025 9/12



Converse

So greedy works on matroids. Amazing fact: if greedy works, set system is a matroid!
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Converse

So greedy works on matroids. Amazing fact: if greedy works, set system is a matroid!

Theorem

Let (U,Z) be an hereditary set system. If for every weighting w : U — Rsq the greedy
algorithm returns a maximum weight independent set, then (U,Z) is a matroid.
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Converse

So greedy works on matroids. Amazing fact: if greedy works, set system is a matroid!

Theorem

Let (U,Z) be an hereditary set system. If for every weighting w : U — Rsq the greedy
algorithm returns a maximum weight independent set, then (U,Z) is a matroid.

So for hereditary set systems, matroids exactly characterize when the greedy algorithm works!
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Proof

Contradiction. Suppose false = (U,Z) hereditary but not matroid.
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Proof

Contradiction. Suppose false = (U,Z) hereditary but not matroid.
= 3F;, F; € Z such that |F;| < |Fa| but Fu{e} ¢ Z for all ee Fp \ F;
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Proof

Contradiction. Suppose false = (U,Z) hereditary but not matroid.
= 3F;, F; € Z such that |F;| < |Fa| but Fu{e} ¢ Z for all ee Fp \ F;

Easy facts:
1.
2.
3.

F> \ F;
Fz\Fl
Fl\F2

Michael Dinitz Lecture 19: Matroids and Greedy

> |F1 \ F2|
>1
> 1 (hereditary)

November 4, 2025

11/12



Proof

Contradiction. Suppose false = (U,Z) hereditary but not matroid.
= 3F;, F; € Z such that |F;| < |Fa| but Fu{e} ¢ Z for all ee Fp \ F;

Easy facts:
1. F2 \ F1 > |F1 \ F2|

{ |F2 N F1] 2

3. |F1 ~ F2| > 1 (hereditary)

== Je >0 such that 0 < (1 +€)|F1 \ Fp| < |F2 \ F]
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Proof

Contradiction. Suppose false = (U,Z) hereditary but not matroid.
= 3F;, F; € Z such that |F;| < |Fa| but Fu{e} ¢ Z for all ee Fp \ F;

Easy facts:

1

757 751/ .
////[ 2.

3.

== Je >0 such that 0 < (1 +€)|F1 \ Fp| < |F2 \ F]

1

F> \ F;
F2\F1
Fl\F2

1+e€

—>—
|F1~ Fo|  |Fa N F|
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Proof (cont'd)

1 l+e . .
Use fact that > TFaFy] define weights.

|FiNFp|

“ it
A ANTAY

‘W(,L):Z
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Proof (cont'd)

1 l+e - .
Use fact that EPNARAANR define weights.

“ it
AN

/JWLL):Z
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» Can't add any of
F2 N F1
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Proof (cont'd)

1 l+e - .
Use fact that > TFaFy] define weights.

|FiNFp|

W Lt Greedy:
w ()2 (F\A] » Adds all of F1n F
» Adds all of F{ \ F>

wle)=2 » Can't add any of
F2 N F1

w(greedy) = 2|F1 n Fp| + |F1 ~

|F1~ Fa|
= 2|F1 N F2| +1
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Proof (cont'd)

l+e - .
Use fact that > TFaFy] define weights.

|F1N F2|

W Lt Greedy:
w ()2 (F\A] » Adds all of F; n F,
» Adds all of F{ \ F>

wle)=2 » Can't add any of
F2 N F1

1+¢€

1
w(greedy) = 2|F1 n F3| + |F1 ~ Fo|———— w(F>)=2|FinF>l+|F>~ Fi|———
(greedy) = 2|Fy n Fp| +|Fy 2||F1\F2| (F2) =2|Fin R+ |F, 1||F2\F1|

=2|F1F1F2|+]. =2|F10F2|+].+€
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Proof (cont'd)

l+e - .
Use fact that > TFaFy] define weights.

|F1N F2|

W Lt Greedy:
w ()2 (F\A] » Adds all of F; n F,
» Adds all of F{ \ F>

wle)=2 » Can't add any of
F2 N F1

1+¢€

1
w(greedy) = 2|F1 n F3| + |F1 ~ Fo|———— w(F>)=2|FinF>l+|F>~ Fi|———
(greedy) = 2|Fy n Fp| +|Fy 2||F1\F2| (F2) =2|Fin R+ |F, 1||F2\F1|

=2|F1F1F2|+]. =2|F10F2|+].+€

Greedy not optimal: contradiction!

Michael Dinitz Lecture 19: Matroids and Greedy November 4, 2025



