
601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz and Jessica Sorrell
Topic: Matroids and Greedy Algorithms Date: 11/4/25

19.1 Introduction

We talked a lot the last lecture about greedy algorithms. While both Prim and Kruskal are greedy,
we talked about how Kruskal is “super-greedy” – rather than doing anything unnecessary like
choosing a starting point, it just keeps choosing the minimum weight edge that it can add without
causing a cycle. A natural thing to do would be to abstract this out, and consider the question of
“when does the greedy algorithm result in an optimal solution”. That’s the question we’re going
to try to answer today.

Let’s first figure out the right abstraction. We want something which abstracts MSTs, but also
works for other problems. So let’s use abstract sets. In particular, we’ll have a universe of elements
U and a collection I of subsets of U . These are usually called independent sets, for reasons which
will become apparent later. For MSTs, think of U as the set of edges, and I as the collection of all
forests, i.e. all acyclic subgraphs. We are also given a weight function w : U → R+. Our goal is to
find a subset I ∈ I with maximum weight, i.e., to find I ∈ I which maximizes

∑
e∈I w(e). In other

words, we are trying to find a maximum weight independent set.

This seems backwards for MSTs, since there we were trying to compute aminimum weight spanning
tree. But it’s not hard to see that if we can do one then we can do the other (at least for MSTs – the
proof for more general settings is obvious based on stuff we’ll do later). For example, let w̄ be some
value which is larger than w(e) for all e. Then we can replace each w(e) with w′(e) = w̄ − w(e).
Since every spanning tree has exactly n− 1 edges, a spanning tree T of total original weight w(T )
will have new weight (n−1)w̄−w(T ). So minimizing the original weight is equivalent to maximizing
the new weight. So from now on we’ll talk about finding the independent set of maximum weight,
and keep in mind that the MST problem is a special case.

19.2 Matroids

Let’s think about what properties forests have which we can abstract out to our independent sets.
There are two obvious properties:

1. ∅ ∈ I, and

2. If F ∈ I and F ′ ⊆ F , then F ′ ∈ I.

Any set system with these two properties is called a hereditary system. The empty set is a forest,
and if we start with a forest and take a subgraph, we still have a forest. Those are obvious. But
there’s another really nice property of forests which is not so obvious:

3. If F1 ∈ I and F2 ∈ I with |F2| > |F1|, then there is some element e ∈ F2 \ F1 such that
F1 ∪ {e} ∈ I.

1



This is sometimes called the augmentation property.

Lemma 19.2.1 If I is the collection of forests of a graph G, then I has the augmentation property.

Proof: Consider two forests F1 and F2 with |F2| > |F1|. We claim that there must exist an edge
{a, b} ∈ F2 where a and b are in different trees of F1. To see this, suppose that it is false. Then
every connected component of F2 would be contained in a connected components of F1. So F2 has
at least as many connected components as F1. Since F2 and F1 are both forests, the number of
connected components in F2 is n− |F2| and the number of connected components of F1 is n− |F1|.
Thus n − |F2| ≥ n − |F1|, and thus |F2| ≤ |F1|. This contradicts our assumption that |F2| > |F1|,
and hence such an {a, b} must exist. Since {a, b} goes between different trees of F1 we can add it
to F1 and we still have a forest.

It is not obvious why we chose to single out this property, but it turns out to be crucial. It is so
crucial that set systems with these three properties have their own name: matroids.

Definition 19.2.2 Let U be a universe of elements and I a collection of subsets of U . Then (U, I)
is a matroid if the following three properties hold:

1. ∅ ∈ I,

2. If F ∈ I and F ′ ⊆ F , then F ′ ∈ I, and

3. If F1 ∈ I and F2 ∈ I with |F2| > |F1|, then there is some element e ∈ F2 \ F1 such that
F1 ∪ {e} ∈ I.

There is a whole area of math called matroid theory, and many deep and interesting results are
known. Today we’re just going to touch the surface, and talk about their relationship to greedy
algorithms. As a good warmup, though, note that the augmentation property implies that if F1 ∈ I
and F2 ∈ I are both maximal (i.e., no element can be added to either of them while maintaining
independence) then |F1| = |F2|. This value, the size of the maximal independent sets, is known as
the rank of a matroid.

19.2.1 Examples of Matroids

We’ve seen that the forests of a graph form a matroid. But one of the powerful things about
matroids is that they generalize a huge number of other interesting set systems. The most famous
(and arguably most important) is the collection of linearly independent vectors in a vector space.
Let’s instantiate this with the vector space Rd, although we’re not going to use anything about this
space in particular (it’s just a vector space that everyone is familiar with).

Suppose that we are given a finite set U of vectors in Rd. I’m assuming that you all know basic
linear algebra, but as a refresher we say that a set F ⊆ U of these vectors is linearly independent if
no vector in F can be written as a linear combination of the others (there are many other equivalent
definitions as well). Let I = {F ⊆ U : F linearly independent}.
Clearly the first two properties of a matroid are satisfied. But it’s easy to see that the augmentation
property is also satisfied! If |F1| < |F2|, and they are both linearly independent, then the dimension
of the space spanned by F1 is strictly less than the dimension of the space spanned by F2, so there

2



is some vector from F2 which is not in the subspace spanned by F1. So we can add this vector to
F1.

There are many, many other examples of matroids, but forests in graphs and linearly independent
sets in vector spaces are the two most famous. Indeed, matroids were originally developed as a
tool for abstracting the meaning of “independence” in linear algebra, and it was soon realized that
matroids also generalize a significant amount of graph theory.

19.3 Representation

So now our algorithmic goal is clear: given a matroid, find an independent set of maximum weight.
Before we can really talk about algorithms, though, we need to talk about representation. If I is
extremely small then perhaps all independent sets are just given to us as part of the input. Then
we can calculate the weight of each one, and return the best. Easy! But in many cases, such as
MSTs, it is not reasonable to assume that I is given to us explicitly. For example, for MSTs we
are given a graph, not a list of all spanning trees. There can be an exponential number of spanning
trees, so even writing them all down would take exponential time.

So let’s think about what was going on in Kruskal’s algorithm. In Kruskal we were given a graph,
but we didn’t actually do a whole lot with this graph. All we needed was a way to test whether
adding an edge would cause a cycle. In other words, given a current forest (independent set) and
a new edge (element) e, would adding e to our current solution keep it a forest (independent)?

This is called an independence oracle, and is the usual assumption when working with matroids.
Slightly more formally, an independence oracle is an algorithm which, when given a set S ⊆ U , tells
us whether S ∈ I. Note, for example, that an independence oracle is easy to implement for forests
in graphs (check S for cycles) and for linearly independent sets of vectors (using e.g. Gaussian
elimination).

19.4 Greedy Algorithm

Now we can finally start talking about algorithms. With an independence oracle in hand, an
obvious algorithm for finding a maximum weight independent set is the greedy algorithm:

1. Initialize F = ∅.

2. Sort U by weight from largest to smallest

3. Consider the elements in sorted order. For each element e, add it to F if F∪{e} is independent.

When applied to forests, this is exactly Kruskal’s algorithm! But in fact it generalizes: the greedy
algorithm is optimal on any matroid.

Theorem 19.4.1 Let F be the independent set returned by the greedy algorithm. Then w(F ) ≥
w(F ′) for all F ′ ∈ I.
Proof: Let F = {f1, f2, . . . , fr} where w(fi) ≥ w(fi+1) for all i ∈ {1, . . . , r − 1}. In other words
this is the order we added the elements to F . Fix some other independent set F ′ = {e1, . . . , ek}

3



where w(ei) ≥ w(ei+1) for all i ∈ {1, . . . , k − 1}. Without loss of generality, we may assume that
k = r and r is the rank of the matroid (convince yourself of this! Remember that weights are
nonnegative).

We will in fact prove the stronger statement that w(fi) ≥ w(ei) for all i. This clearly implies the
theorem. So suppose that it is false, and let j be the smallest index at which it is violated, i.e. j
is the first time where w(fj) < w(ej). Let F1 = {f1, f2, . . . , fj−1}, and let F2 = {e1, . . . , ej}. Then
by the augmentation property, there is some element ez ∈ F2 \F1 so that F1 ∪{ez} is independent.
But w(ez) ≥ w(ej) > w(fj). So the greedy algorithm would have chosen to add ez instead of fi!
This is a contradiction, so proves the theorem.

So the greedy algorithm works on matroids, and for the same reason that Kruskal worked for MSTs.
An astonishing fact is that the converse is also true: if the greedy algorithm works for all weight
functions, then the independent sets are a matroid!

Theorem 19.4.2 Let (U, I) be an hereditary set system. If for every weighting w : U → R≥0 the
greedy algorithm returns a maximum weight independent set, then (U, I) is a matroid.

Proof: Suppose this is false. Then (U, I) is not a matroid so there are some F1, F2 ∈ I with
|F1| < |F2| such that F1 ∪ {e} ̸∈ I for all e ∈ F2 \ F1.

Clearly |F2 \ F1| > |F1 \ F2| and F1 \ F2 is nonempty (or else F1 would be a subset of F2 so by the
hereditary property we could add some element of F2 to F1). This means we can choose a positive
number ϵ so that

0 < (1 + ϵ)|F1 \ F2| < |F2 \ F1|.

and thus
1

|F1 \ F2|
>

1 + ϵ

|F2 \ F2|
. (19.4.1)

Let’s define a weight function using ϵ.

w(e) = 2 if e ∈ F1 ∩ F2

w(e) =
1

|F1 \ F2|
if e ∈ F1 \ F2

w(e) =
1 + ϵ

|F2 \ F1|
if e ∈ F2 \ F1

w(e) = 0 otherwise

What does the greedy algorithm do on this weight function? First it picks all elements of F1 ∩ F2.
Then it picks all elements of F1 \ F2 because of Equation (19.4.1). So at this point it has picked
exactly the set F1. Now since we assumed that no elements of F2 \ F1 could be added to F1 while
maintaining independence, the greedy algorithm never gets any more value. Thus the total weight
obtained by the greedy algorithm is

2|F1 ∩ F2|+ |F1 \ F2|
1

|F1 \ F2|
= 2|F1 ∩ F2|+ 1.

4



On the other hand, the weight of F2 is

2|F1 ∩ F2|+ |F2 \ F1|
1 + ϵ

|F2 \ F1|
= 2|F1 ∩ F2|+ 1 + ϵ

This means that the greedy algorithm did not return the maximum weight independent set! But
we assumed that the greedy algorithm worked for all weight functions, including this one. This is
a contradiction. Thus no such F1 and F2 can exist, so (U, I) is a matroid.

5


	Introduction
	Matroids
	Examples of Matroids

	Representation
	Greedy Algorithm

