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Introduction

Last time: somewhat greedy algorithm (Prim’s), extremely greedy algorithm (Kruskal’s)

Question: when does greedy algorithm return optimal solution?

Want abstraction that includes MSTs, but also works for many other problems.

Weighted Set System:

▸ Universe U
▸ Collection I ⊆ 2U (so I ⊆ U for all I ∈ I). Called independent sets

▸ Weights w ∶ U → R+

Problem: find max weight independent set
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MST as Weighted Set System

MST: weighted graph G = (V ,E ,w). Find MST.

Set system:

▸ U = E
▸ I = {F ⊆ E ∶ (V ,F) a forest}

What about weights? MST is minimize, but problem we defined is maximize.

▸ Let w̄ > w(e) for all e ∈ E , let w ′(e) = w̄ −w(e) for all e ∈ E
For any tree T :

w ′(T) = ∑
e∈T

w ′(e) = ∑
e∈T
(w̄ −w(e)) = ∑

e∈T
w̄ − ∑

e∈T
w(e) = (n − 1)w̄ −w(T)

So under weights w ′, max-weight IS = max-weight forest = max-weight spanning tree =
min-weight spanning tree (weights w)

▸ So finding max-weight forest = finding min spanning tree.
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Useful Properties of Forests
Let U = E and I = {F ⊆ E ∶ (V ,F) a forest}
Useful properties:

1. ∅ ∈ I
2. If F ∈ I and F ′ ⊆ F , then F ′ ∈ I

3. Augmentation Property: If F1 ∈ I and F2 ∈ I with ∣F2∣ > ∣F1∣, then there is some edge
e ∈ F2 ∖ F1 such that F1 ∪ {e} ∈ I.

Proof Sketch that Forests have Augmentation Property.

Suppose false: no edge in F2 ∖ F1 can be added to F1. Let c1 = # components in F1, c2 = #
components in F2

Ô⇒ every edge of F2 has both endpoints in same component of F1

Ô⇒ every component of F2 contained in component of F1 Ô⇒ c2 ≥ c1
But c2 = n − ∣F2∣ < n − ∣F1∣ = c1.
Contradiction.
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Matroids

Definition

(U,I) is a matroid if the following three properties hold:

1. ∅ ∈ I,
2. If F ∈ I and F ′ ⊆ F , then F ′ ∈ I, and
3. If F1 ∈ I and F2 ∈ I with ∣F2∣ > ∣F1∣, then there is some element e ∈ F2 ∖ F1 such that

F1 ∪ {e} ∈ I.

(U,I) is a hereditary set system if the first two properties hold.

Matroid theory: super interesting area of combinatorics! Surprising amount of structure.

Warmup: In any matroid, the maximal independent sets (called bases) have the same size
(called the rank of the matroid).
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Examples of Matroids

▸ Forests in graphs

▸ Linearly independent vectors in vector space
▸ U a finite set of vectors in Rd

▸ I = {F ⊆ U ∶ F linearly independent}
▸ ∅ linearly independent
▸ If F linearly independent and F ′ ⊆ F , then F ′ linearly independent
▸ Augmentation: if F1 linearly independent, F2 linearly independent, and ∣F2∣ > ∣F1∣ Ô⇒

dim(span(F1)) = ∣F1∣ < ∣F2∣ = dim(span(F2))

Matroids: generalize both graph theory and linear algebra!

▸ Originally invented by Whitney as an attempt to generalize the concept of “linear
independence”
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Representation

To do algorithms with matroids, need to figure out how they’re represented.

Option 1: list all independent sets

▸ Too many of them!

What did we need for MST (Kruskal)?

Independence Oracle: algorithm which take F ⊆ U , returns YES if F ∈ I, NO if F /∈ I
For MST: “does F have any cycles”? Independence oracle: DFS/BFS, union-find

We’ll assume we have independence oracle.
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Greedy Algorithm

Kruskal, generalized to matroids (and max weight)!

F = ∅
Sort U by weight (largest to smallest)
For each u ∈ U in sorted order {

If F ∪ {u} ∈ I, add u to F
}
Return F
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Correctness

Theorem

Let F be independent set returned by greedy. Then w(F) ≥ w(F ′) for all F ′ ∈ I.

▸ F = {f1, f2, . . . , fr}, where w(fi ) ≥ w(fi+1) for all i (order added by greedy)

▸ F ′ = {e1,e2, . . . ,er} where w(ei ) ≥ w(ei+1) for all i
Claim: w(fi ) ≥ w(ei ) for all i .
Proof: Suppose false, let j smallest integer such that w(fj ) < w(ej ).
Let F1 = {f1, . . . , fj−1} and let F2 = {e1, . . . ,ej}
∣F2∣ > ∣F1∣, so by augmentation there is some ez ∈ F2 ∖ F1 such that F1 ∪ {ez} ∈ I.

w(ez) ≥ w(ej ) > w(fj )

Contradiction! Greedy would add ez next, not fj .
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Converse

So greedy works on matroids. Amazing fact: if greedy works, set system is a matroid!

Theorem

Let (U,I) be an hereditary set system. If for every weighting w ∶ U → R≥0 the greedy
algorithm returns a maximum weight independent set, then (U,I) is a matroid.

So for hereditary set systems, matroids exactly characterize when the greedy algorithm works!
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Proof

Contradiction. Suppose false Ô⇒ (U,I) hereditary but not matroid.

Ô⇒ ∃F1,F2 ∈ I such that ∣F1∣ < ∣F2∣ but F1 ∪ {e} /∈ I for all e ∈ F2 ∖ F1

PI Ses false
U I hereditary hat act matroid

I f Fa c I g t.IR ClFdhtFVEel4IV eefzlf

I
1 Ifi Fil l fitful 3 Elf 121
2 I Fel Fil 21

f g O s t O LCH e IFilfelLIElf I

sitter

Easy facts:

1. ∣F2 ∖ F1∣ > ∣F1 ∖ F2∣
2. ∣F2 ∖ F1∣ ≥ 1
3. ∣F1 ∖ F2∣ ≥ 1 (hereditary)

Ô⇒ ∃ϵ > 0 such that 0 < (1 + ϵ)∣F1 ∖ F2∣ < ∣F2 ∖ F1∣

Ô⇒
1

∣F1 ∖ F2∣
>

1 + ϵ
∣F2 ∖ F1∣
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Proof (cont’d)

Use fact that 1
∣F1∖F2∣ >

1+ϵ
∣F2∖F1∣ to define weights.Define weights

reader 74 11

Greedy ALE all of f Afa
A let all of filth
Can t add any of Elf

a greedy 21 Final t fitful z
r LIF n Fal t l

Greedy:

▸ Adds all of F1 ∩ F2

▸ Adds all of F1 ∖ F2

▸ Can’t add any of
F2 ∖ F1

w(greedy) = 2∣F1 ∩ F2∣ + ∣F1 ∖ F2∣
1

∣F1 ∖ F2∣
= 2∣F1 ∩ F2∣ + 1

w(F2) = 2∣F1 ∩ F2∣ + ∣F2 ∖ F1∣
1 + ϵ
∣F2 ∖ F1∣

= 2∣F1 ∩ F2∣ + 1 + ϵ

Greedy not optimal: contradiction!
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