Lecture 20: Max-Flow Min-Cut

Jessica Sorrell

November 6, 2025 601.433/633 Introduction to Algorithms Slides by Michael Dinitz

Introduction

Flow Network:

- ► Directed graph **G** = (**V**, **E**)
- ► Capacities $c: E \to \mathbb{R}_{\geq 0}$ (simplify notation: c(x,y) = 0 if $(x,y) \notin E$)
- ▶ Source $s \in V$, sink $t \in V$

Today: flows and cuts

- ▶ Flow: "sending stuff" from **s** to **t**
- Cut: separating t from s

Turn out to be very related!

Today: some algorithms but not efficient. Mostly structure. Better algorithms Tuesday.

Intuition: send "stuff" from s to t

▶ Water in a city water system, traffic along roads, trains along tracks, . . .

Intuition: send "stuff" from **s** to **t**

▶ Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s,t)-flow is a function $f:E\to\mathbb{R}_{\geq 0}$ such that

$$\sum_{u:(u,v)\in E} f(u,v) = \sum_{u:(v,u)\in E} f(v,u)$$

for all $v \in V \setminus \{s, t\}$. This constraint is known as flow conservation.

Intuition: send "stuff" from **s** to **t**

Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s,t)-flow is a function $f:E\to\mathbb{R}_{>0}$ such that

$$\sum_{u:(u,v)\in E} f(u,v) = \sum_{u:(v,u)\in E} f(v,u)$$

for all $v \in V \setminus \{s, t\}$. This constraint is known as *flow conservation*.

Value of flow |f|: "total amount of stuff sent from s to t"

Intuition: send "stuff" from **s** to **t**

Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s, t)-flow is a function $f : E \to \mathbb{R}_{\geq 0}$ such that

$$\sum_{u:(u,v)\in E} f(u,v) = \sum_{u:(v,u)\in E} f(v,u)$$

for all $v \in V \setminus \{s, t\}$. This constraint is known as flow conservation.

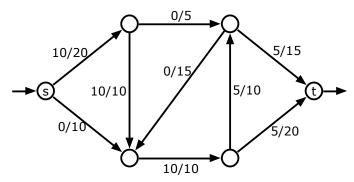
Value of flow |f|: "total amount of stuff sent from s to t"

$$|f| = \sum_{u:(s,u)\in E} f(s,u) - \sum_{u:(u,s)\in E} f(u,s) = \sum_{u:(u,t)\in E} f(u,t) - \sum_{u:(t,u)\in E} f(t,u)$$

Lecture 20: Max-Flow Min-Cut Jessica Sorrell

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

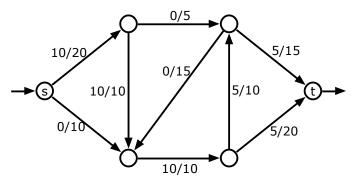

Definitions:

- ightharpoonup An (s, t)-flow satisfying capacity constraints is a *feasible* flow.
- ▶ If f(e) = c(e) then f saturates e.
- ▶ If f(e) = 0 then f avoids e.

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Definitions:

- ightharpoonup An (s, t)-flow satisfying capacity constraints is a *feasible* flow.
- ▶ If f(e) = c(e) then f saturates e.
- ▶ If f(e) = 0 then f avoids e.



An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Definitions:

- ightharpoonup An (s, t)-flow satisfying capacity constraints is a *feasible* flow.
- ▶ If f(e) = c(e) then f saturates e.
- ▶ If f(e) = 0 then f avoids e.

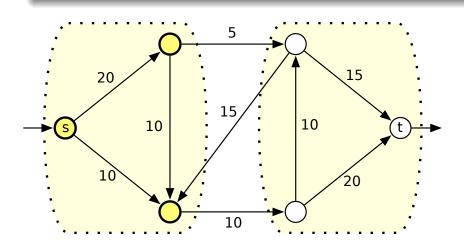
An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

Problem we'll talk about: find feasible flow of maximum value (max flow)

Definition

▶ An (s,t)-cut is a partition of V into (S,\bar{S}) such that $s \in S$, $t \notin S$

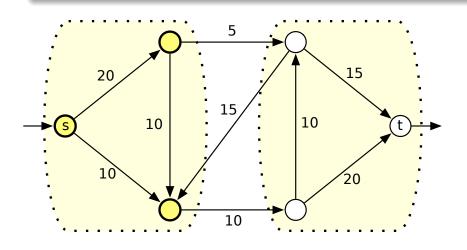
Definition


- ▶ An (s, t)-cut is a partition of V into (S, \bar{S}) such that $s \in S$, $t \notin S$
- ▶ The *capacity* of an (s,t)-cut (S,\bar{S}) is

$$cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in\bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in\bar{S}} c(u,v)$$

Definition

- ▶ An (s, t)-cut is a partition of V into (S, \bar{S}) such that $s \in S$, $t \notin S$
- ▶ The *capacity* of an (s, t)-cut (S, \bar{S}) is


$$cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in\bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in\bar{S}} c(u,v)$$

Definition

- ▶ An (s,t)-cut is a partition of V into (S,\bar{S}) such that $s \in S$, $t \notin S$
- ▶ The *capacity* of an (s,t)-cut (S,\bar{S}) is

$$cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in\bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in\bar{S}} c(u,v)$$

Problem we'll talk about: find (s, t)-cut of minimum capacity (min cut)

Theorem

Let f be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \leq cap(S,\bar{S})$.

Theorem

Let f be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \leq cap(S,\bar{S})$.

$$|f| = \sum_{\mathbf{v} \in \mathbf{V}} f(\mathbf{s}, \mathbf{v}) - \sum_{\mathbf{v} \in \mathbf{V}} f(\mathbf{v}, \mathbf{s})$$
 (definition)

Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025

Theorem

Let f be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \leq cap(S,\bar{S})$.

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$
 (definition)
$$= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$
 (flow conservation constraints)

Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025

Theorem

Let f be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \leq cap(S,\bar{S})$.

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$
 (definition)
$$= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$
 (flow conservation constraints)
$$= \sum_{u \in S} \left(\sum_{v \in S} f(u, v) - \sum_{v \in S} f(v, u) \right)$$
 (remove terms which cancel)

Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025

Theorem

Let f be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \leq cap(S,\bar{S})$.

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$
 (definition)
$$= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$
 (flow conservation constraints)
$$= \sum_{u \in S} \left(\sum_{v \in \overline{S}} f(u, v) - \sum_{v \in \overline{S}} f(v, u) \right)$$
 (remove terms which cancel)
$$\leq \sum_{u \in S} \sum_{v \in \overline{S}} f(u, v)$$
 (flow is nonnegative)

Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025

Theorem

Let f be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \leq cap(S,\bar{S})$.

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

$$= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

$$= \sum_{u \in S} \left(\sum_{v \in \bar{S}} f(u, v) - \sum_{v \in \bar{S}} f(v, u) \right)$$

$$\leq \sum_{u \in S} \sum_{v \in \bar{S}} f(u, v)$$

$$\leq \sum_{u \in S} \sum_{v \in \bar{S}} c(u, v) = cap(S, \bar{S})$$

(definition)

(flow conservation constraints)

(remove terms which cancel)

(flow is nonnegative)

(flow is feasible)

Max-Flow Min-Cut

Corollary

If f avoids every $\bar{S} \to S$ edge and saturates every $S \to \bar{S}$ edge, then f is a maximum flow and (S, \bar{S}) is a minimum cut.

Max-Flow Min-Cut

Corollary

If f avoids every $\bar{S} \to S$ edge and saturates every $S \to \bar{S}$ edge, then f is a maximum flow and (S, \bar{S}) is a minimum cut.

Theorem (Max-Flow Min-Cut Theorem)

In any flow network, value of $\max(s,t)$ -flow = capacity of $\min(s,t)$ -cut.

Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025

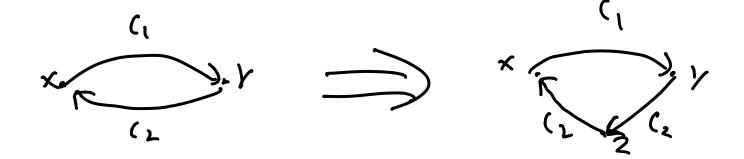
Max-Flow Min-Cut

Corollary

If f avoids every $\bar{S} \to S$ edge and saturates every $S \to \bar{S}$ edge, then f is a maximum flow and (S, \bar{S}) is a minimum cut.

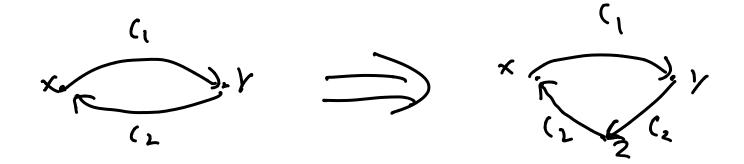
Theorem (Max-Flow Min-Cut Theorem)

In any flow network, value of $\max(s,t)$ -flow = capacity of $\min(s,t)$ -cut.


Spend rest of today proving this.

- Many different valid proofs.
- We'll see a classical proof which will naturally lead to algorithms for these problems.

Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025


One Direction

Cycles of length 2 will turn out to be annoying. Get rid of them.

One Direction

Cycles of length 2 will turn out to be annoying. Get rid of them.

- Doesn't change max-flow or min-cut
- ▶ Increases #edges by constant factor, # nodes to original # edges.

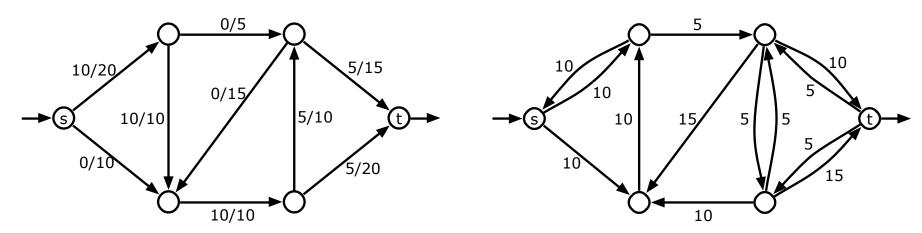
Residual

Let f be feasible (s, t)-flow. Define residual capacities:

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$$

Residual

Let f be feasible (s, t)-flow. Define residual capacities:


$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E \\ f(v, u) & \text{if } (v, u) \in E \end{cases}$$
otherwise

Residual

Let f be feasible (s, t)-flow. Define residual capacities:

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E \\ f(v, u) & \text{if } (v, u) \in E \end{cases}$$
otherwise

Residual Graph: $G_f = (V, E_f)$ where $(u, v) \in E_f$ if $c_f(u, v) > 0$.

A flow f in a weighted graph G and the corresponding residual graph G_f .

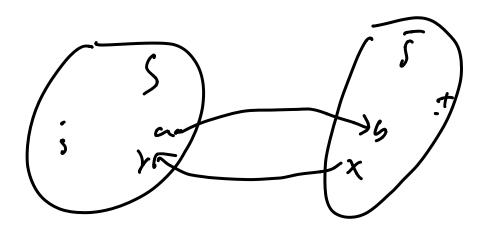
Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025

Let f be a max (s, t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025 10 / 21

Let f be a max (s, t)-flow with residual graph G_f .

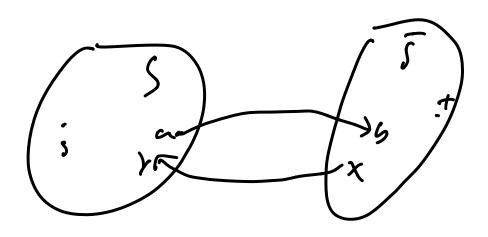

Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let f be a max (s, t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

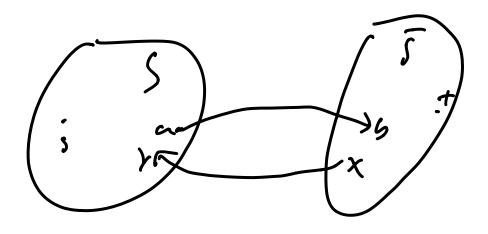


Let f be a max (s, t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{ \text{vertices reachable from } s \text{ in } G_f \}$

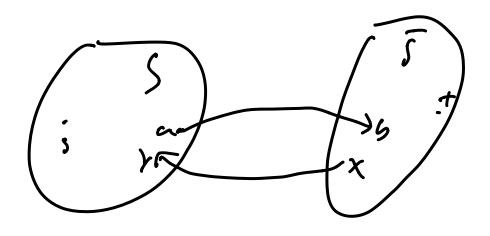


• (S, \bar{S}) an (s, t)-cut. \checkmark

Let f be a max (s, t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

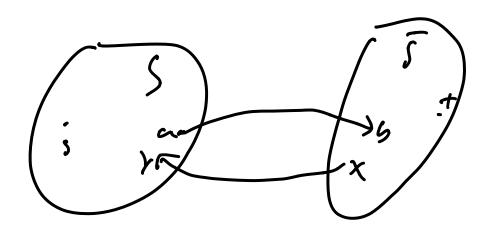


- (S, \bar{S}) an (s, t)-cut. \checkmark
- $ightharpoonup c_f(a,b) =$

Let f be a max (s, t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

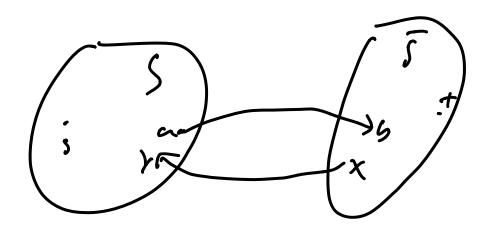


- (S, \bar{S}) an (s, t)-cut. \checkmark
- $c_f(a,b) = 0$

Let f be a max (s, t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f



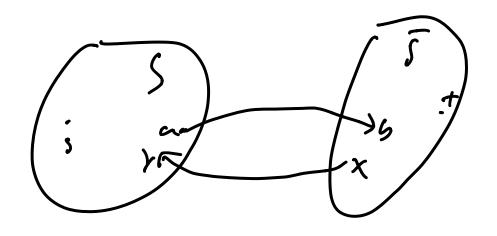
- (S, \bar{S}) an (s, t)-cut. \checkmark
- $c_f(a,b) = 0$
 - $\implies c(a,b) f(a,b) = 0$
 - $\implies c(a,b) = f(a,b)$

Let f be a max (s, t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

- $ightharpoonup (S,ar{S})$ an (s,t)-cut. \checkmark
- $c_f(a,b) = 0$ c(a,b) f(a,b) = 0 c(a,b) = f(a,b)
- $ightharpoonup c_f(y,x) =$


Start of Proof

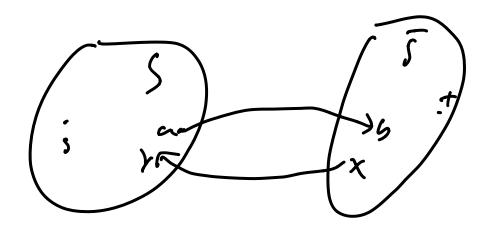
Let f be a max (s, t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{ \text{vertices reachable from } s \text{ in } G_f \}$

- $ightharpoonup (S, ar{S})$ an (s, t)-cut. \checkmark
- $c_f(a,b) = 0$ c(a,b) f(a,b) = 0 c(a,b) = f(a,b)
- $c_f(y,x)=0$


Start of Proof

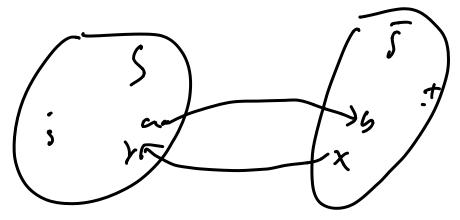
Let f be a max (s, t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{ \text{vertices reachable from } s \text{ in } G_f \}$

- (S, \bar{S}) an (s, t)-cut. \checkmark
- $c_f(a,b) = 0$ c(a,b) f(a,b) = 0 c(a,b) = f(a,b)
- $c_f(y,x)=0$ $\implies f(x,y)=0$


Start of Proof

Let f be a max (s, t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{ \text{vertices reachable from } s \text{ in } G_f \}$

- (S, \bar{S}) an (s, t)-cut. \checkmark
- $c_f(a,b) = 0$ c(a,b) f(a,b) = 0 c(a,b) = f(a,b)
- $c_f(y,x)=0$ $\implies f(x,y)=0$

f saturates $S \to \bar{S}$ edges, avoids $\bar{S} \to S$ edges $\Longrightarrow cap(S, \bar{S}) = |f|$ by corollary

Case 2

Suppose \exists an $s \rightarrow t$ path P in G_f .

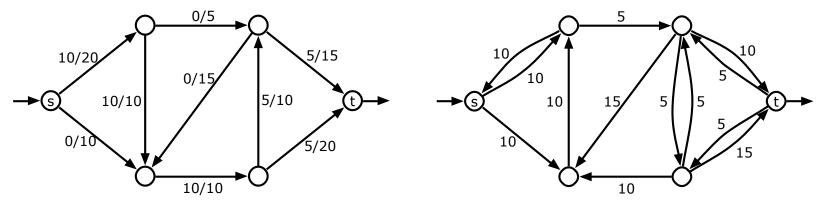
Called an augmenting path

Idea: show that we can "push" more flow along P, so f not a max flow. Contradiction, can't be in this case.

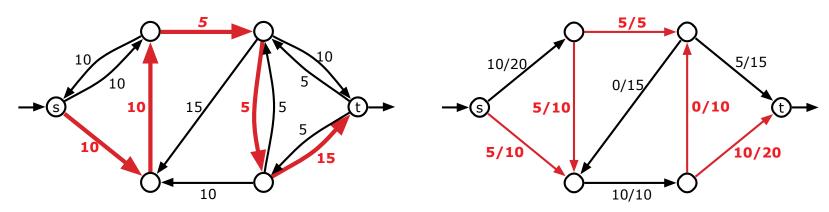
Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025 11 / 21

Case 2

Suppose \exists an $s \rightarrow t$ path P in G_f .


Called an augmenting path

Idea: show that we can "push" more flow along P, so f not a max flow. Contradiction, can't be in this case.


▶ Foreshadowing: augmenting path allows us to send more flow. Algorithm to increase flow!

Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025 11 / 21

Intuition

A flow f in a weighted graph G and the corresponding residual graph G_f .

An augmenting path in G_f with value F=5 and the augmented flow f'.

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$.

13 / 21

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$.

Define new flow f': for all $(u, v) \in E$, let

$$f'(u,v) = \begin{cases} f(u,v) + F & \text{if } (u,v) \text{ in } P \\ f(u,v) - F & \text{if } (v,u) \text{ in } P \\ f(u,v) & \text{otherwise} \end{cases}$$

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$.

Define new flow f': for all $(u, v) \in E$, let

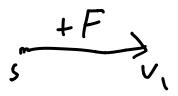
$$f'(u, v) = \begin{cases} f(u, v) + F & \text{if } (u, v) \text{ in } P \\ f(u, v) - F & \text{if } (v, u) \text{ in } P \\ f(u, v) & \text{otherwise} \end{cases}$$

Claim: f' is a feasible (s, t)-flow with |f'| > |f|.

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$.

Define new flow f': for all $(u, v) \in E$, let

$$f'(u, v) = \begin{cases} f(u, v) + F & \text{if } (u, v) \text{ in } P \\ f(u, v) - F & \text{if } (v, u) \text{ in } P \\ f(u, v) & \text{otherwise} \end{cases}$$

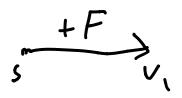

Claim: f' is a feasible (s, t)-flow with |f'| > |f|.

Plan: prove (sketch) each subclaim individually


- |f'| > |f|
- f' an (s, t)-flow (flow conservation)
- ▶ **f**′ feasible (obeys capacities)

Consider first edge of P (out of s), say (s, v_1)

- ▶ If $(s, v_1) \in E$, then $f'(s, v_1) = f(s, v_1) + F$
- ▶ If $(v_1, s) \in E$ then $f'(v_1, s) = f(v_1, s) F$



ov

Consider first edge of P (out of s), say (s, v_1)

- ▶ If $(s, v_1) \in E$, then $f'(s, v_1) = f(s, v_1) + F$
- ▶ If $(v_1, s) \in E$ then $f'(v_1, s) = f(v_1, s) F$

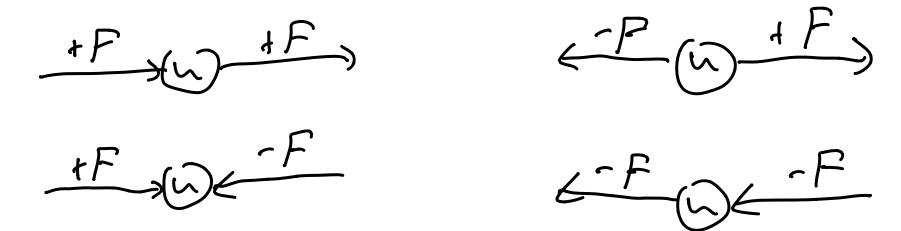
ov

$$|f'| = \sum_{u} f'(s, u) - \sum_{u} f'(u, s) = |f| + F > |f|$$

f' obeys flow conservation

Consider some $u \in V \setminus \{s, t\}$.

f' obeys flow conservation


Consider some $u \in V \setminus \{s, t\}$.

▶ If $u \notin P$, no change in flow at $u \implies$ still balanced.

f' obeys flow conservation

Consider some $u \in V \setminus \{s, t\}$.

- ▶ If $u \notin P$, no change in flow at $u \implies$ still balanced.
- ▶ If $u \in P$, four possibilities:

Let $(u, v) \in E$

16 / 21

Let
$$(u, v) \in E$$

▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \le c(u, v)$

Let
$$(u, v) \in E$$

- ▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \le c(u, v)$
 - ▶ If (*u*, *v*) ∈ *P*:

Let
$$(u, v) \in E$$

- ▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \le c(u, v)$
 - ▶ If (*u*, *v*) ∈ *P*:

$$f'(u, v) = f(u, v) + F$$

$$\leq f(u, v) + c_f(u, v)$$

$$= f(u, v) + c(u, v) - f(u, v)$$

$$= c(u, v)$$

Let
$$(u, v) \in E$$

- ▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \le c(u, v)$
 - If $(u, v) \in P$:

▶ If (*v*, *u*) ∈ *P*:

$$f'(u, v) = f(u, v) + F$$

$$\leq f(u, v) + c_f(u, v)$$

$$= f(u, v) + c(u, v) - f(u, v)$$

$$= c(u, v)$$

Let
$$(u, v) \in E$$

- ▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \le c(u, v)$
 - ▶ If (*u*, *v*) ∈ *P*:

$$f'(u,v) = f(u,v) + F$$

$$\leq f(u,v) + c_f(u,v)$$

$$= f(u,v) + c(u,v) - f(u,v)$$

$$= c(u,v)$$

• If
$$(v, u) \in P$$
:

$$f'(u, v) = f(u, v) - F$$

$$\geq f(u, v) - c_f(v, u)$$

$$= f(u, v) - f(u, v)$$

$$= 0$$

Ford-Fulkerson Algorithm and Integrality

FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

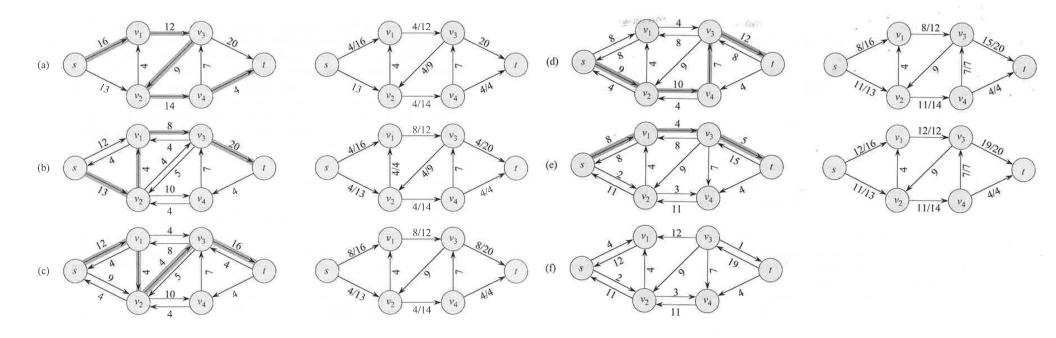
```
f=ec{0} while(\exists s	o t path P in G_f) { F=\min_{e\in P}c_f(e) Push F flow along P to get new flow f' f=f' } return f
```

Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025 18 / 21

FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

```
f=ec{0} while (\exists s	o t \ \text{path } P \ \text{in } G_f) { F=\min_{e\in P} c_f(e) Push F flow along P to get new flow f' f=f' } return f or \{v\in V: v \ \text{reachable from } s \ \text{in } G_f\}
```


FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

```
f = \vec{0} while (\exists s \to t \text{ path } P \text{ in } G_f) { F = \min_{e \in P} c_f(e) Push F flow along P to get new flow f' f = f' } return f or \{v \in V : v \text{ reachable from } s \text{ in } G_f\}
```

Correctness: directly from previous proof

Example

Integrality

Corollary

If all capacities are integers, then there is a max flow such that the flow through every edge is an integer

Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025 20 / 21

Integrality

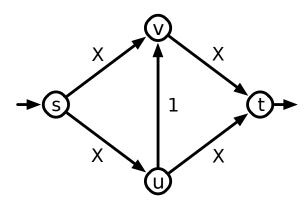
Corollary

If all capacities are integers, then there is a max flow such that the flow through every edge is an integer

Proof.

Induction on iterations of the Ford-Fulkerson algorithm: initially true, stays true \implies true at end.

> Jessica Sorrell Lecture 20: Max-Flow Min-Cut November 6, 2025 20 / 21

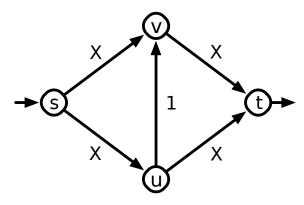

Theorem

If all capacities are integers and the max flow value is \mathbf{F} , Ford-Fulkerson takes time at most O(F(m+n))

Theorem

If all capacities are integers and the max flow value is \mathbf{F} , Ford-Fulkerson takes time at most O(F(m+n))

Finding path takes O(m+n) time, increase flow by at least 1

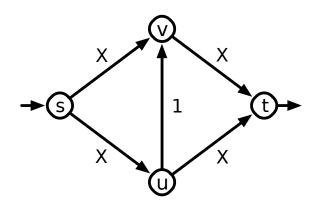


A bad example for the Ford-Fulkerson algorithm.

Theorem

If all capacities are integers and the max flow value is \mathbf{F} , Ford-Fulkerson takes time at most O(F(m+n))

Finding path takes O(m+n) time, increase flow by at least 1


Running time $\geq \#$ iterations.

A bad example for the Ford-Fulkerson algorithm.

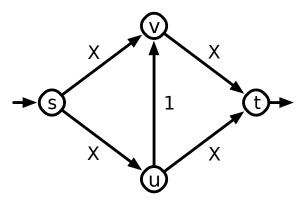
Theorem

If all capacities are integers and the max flow value is \mathbf{F} , Ford-Fulkerson takes time at most O(F(m+n))

Finding path takes O(m+n) time, increase flow by at least 1

Running time $\geq \#$ iterations. This example:

• Running time: $\Omega(x)$


21/21

A bad example for the Ford-Fulkerson algorithm.

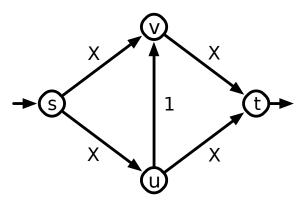
Theorem

If all capacities are integers and the max flow value is \mathbf{F} , Ford-Fulkerson takes time at most O(F(m+n))

Finding path takes O(m+n) time, increase flow by at least 1

A bad example for the Ford-Fulkerson algorithm.

Running time $\geq \#$ iterations.


This example:

- Running time: $\Omega(x)$
- Input size $O(\log x) + O(1)$

Theorem

If all capacities are integers and the max flow value is \mathbf{F} , Ford-Fulkerson takes time at most O(F(m+n))

Finding path takes O(m+n) time, increase flow by at least 1

A bad example for the Ford-Fulkerson algorithm.

Running time $\geq \#$ iterations.

This example:

- Running time: $\Omega(x)$
- Input size $O(\log x) + O(1)$
- ⇒ Exponential time!