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Introduction

Last time:
» Max-Flow = Min-Cut

» Can compute max flow and min cut using Ford-Fulkerson: while residual graph has an
s — t path, push flow along it.

> Corollary: if all capacities integers, max-flow is integral

> If max-flow has value F, time O(F(m + n)) (if all capacities integers)
» Exponential time!

Today:

> Important setting where FF is enough: max bipartite matching

> Two ways of making FF faster: Edmonds-Karp
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Max Bipartite Matching
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Setup
o /K‘/Q NS emsleg

Definition

A graph G = (V, E) is bipartite if V can be partitioned
into two parts L, R such that every edge in E has one
endpoint in L and one endpoint in R.

Definition
A matching is a subset M ¢ E such that ene’ = & for all
e,e’ € M with e # e’ (no two edges share an endpoint)

Bipartite Maximum Matching: Given bipartite graph G = (V, E), find matching M
maximizing |M|
> Extremely important problem, doesn’t seem to have much to do with flow!
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Algorithm

Give all edges capacity 1

Direct all edges from L to R

Add source s and sink t

Add edges of capacity 1 from s to L
Add edges of capacity 1 from R to t

Run FF to get flow f
Return M ={eeLxR: f(e) >0}
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Correctness

Claim: M is a matching
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Correctness
Claim: M is a matching

Proof: capacities in {0,1} = f(e) € {0,1}
for all e (integrality)
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Correctness

Claim: M is a matching Claim: M is maximum matching

Proof: capacities in {0,1} = f(e) € {0,1} Proof: Suppose larger matching M’
for all e (integrality)
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Correctness

Claim: M is a matching Claim: M is maximum matching

Proof: capacities in {0,1} = f(e) € {0,1} Proof: Suppose larger matching M’
for all e (integrality) Can send |M’| flow using M’

L 2
@#@/@

e

S,

Michael Dinitz Lecture 21: Max-Flow Il November 11, 2025 6/18



Correctness

Claim: M is a matching Claim: M is maximum matching

Proof: capacities in {0,1} = f(e) € {0,1} Proof: Suppose larger matching M’
for all e (integrality) Can send |M’| flow using M’

> f'(s,u) =1 is u matched in M,

1 .
1. \@ otherwise 0
@’_’”\/g %

> f'(v,t) =1 if v matched in M’,
otherwise 0

1
a\ 1 > f'(u,v) =1if {u,v} e M’ otherwise 0
/ i— >0/_—’)67
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Correctness

Claim: M is a matching Claim: M is maximum matching

Proof: capacities in {0,1} = f(e) € {0,1} Proof: Suppose larger matching M’
for all e (integrality) Can send |M’| flow using M’

> f'(s,u) =1 is u matched in M,

1 .
1. \@ otherwise 0
@’_’”\/g %

> f'(v,t) =1 if v matched in M’,
otherwise 0

1
a\ 1 > f'(u,v) =1if {u,v} e M’ otherwise 0
/ i— >0/_—’)67

J > |F| = M| > |M| = |f]
D\o/
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Correctness

Claim: M is a matching Claim: M is maximum matching

Proof: capacities in {0,1} = f(e) € {0,1} Proof: Suppose larger matching M’
for all e (integrality) Can send |M’| flow using M’

> f'(s,u) =1 is u matched in M,

1. W\@ otherwise 0
O— ? f'(v,t) =1 if v matched in M’

v

2 otherwise 0
/‘,w}) 1 @ > f'(u,v) =1if {u,v} e M’ otherwise 0

J f'| = |M'| > |M| = |f]
D\o/ ’

Contradiction

v

Michael Dinitz Lecture 21: Max-Flow Il November 11, 2025 6/18



Running Time

Running Time:
» O(n+ m) to make new graph
> |f| = M| < n/2 iterations of FF

= O(n(m+ n)) = O(mn) time (assuming m > Q(n))
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Exensions

Many extensions:
> Max-weight bipartite matching
» Min-cost perfect matching

> Matchings in general graphs
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Exensions

Many extensions:
> Max-weight bipartite matching
» Min-cost perfect matching

> Matchings in general graphs

’ - .

Still active area of study!

> Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii.
Faster Matchings via Learned Duals. NeurlPS 2021.

» Michael Dinitz, George Li, Quanquan Liu, Felix Zhou. Differentially Private Matchings.
Submitted, on arXiv.
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Edmonds-Karp
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Intuition
Bad example for Ford-Fulkerson:

If Ford-Fulkerson chooses bad augmenting
- 1 O paths, super slow!

U

A bad example for the Ford-Fulkerson algorithm.
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Intuition
Bad example for Ford-Fulkerson:

X4 N If Ford-Fulkerson chooses bad augmenting
- 1 O paths, super slow!
X X Obvious idea: Choose better paths!
u

A bad example for the Ford-Fulkerson algorithm.

Obvious path to pick:

argmax  mincr(e) (“widest” augmenting path)
augmenting paths P €€P
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Intuition
Bad example for Ford-Fulkerson:

- 1 O paths, super slow!

X O/ Obvious idea: Choose better paths!
u

A bad example for the Ford-Fulkerson algorithm.

Obvious path to pick:

argmax  mincr(e) (“widest” augmenting path)
augmenting paths P €€P

Less obvious pat pick:

arg min |P| (augmenting path with fewest edges)
nting paths P
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Edmonds-Karp

Use Ford-Fulkerson, but pick shortest augmenting path (unweighted)
> lgnore capacities, just find augmenting path with fewest hops!
> Easy to compute with BFS in O(m + n) time.

» Correct, since just FF with particular path choice.
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> lgnore capacities, just find augmenting path with fewest hops!
> Easy to compute with BFS in O(m + n) time.

» Correct, since just FF with particular path choice.

Main question: how many iterations?
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Edmonds-Karp

Use Ford-Fulkerson, but pick shortest augmenting path (unweighted)
> lgnore capacities, just find augmenting path with fewest hops!
> Easy to compute with BFS in O(m + n) time.

» Correct, since just FF with particular path choice.

Main question: how many iterations?

Theorem |

Edmonds-Karp has at most O(mn) iterations, so at most O(m?n) running time (if m > n)
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Proof (sketch) of Edmonds-Karp

|dea: prove that distance from s to t (unweighted) goes up by at least one every < m
iterations.
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Proof (sketch) of Edmonds-Karp

|dea: prove that distance from s to t (unweighted) goes up by at least one every < m
iterations.

» Distance initially > 1 == distance > n after at most mn iterations
> Only distance larger than nis oo: no s —» t path

— [erminates after at most mn iterations.
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Proof (sketch) of Edmonds-Karp (continued)

Suppose s — t distance is d.
“Lay out” residual graph in levels by BFS (distance from s)

L L L Ly Ls Le
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Proof (sketch) of Edmonds-Karp (continued)

Suppose s — t distance is d.
“Lay out” residual graph in levels by BFS (distance from s)
Edge types:
» Forward edges: 1 level
©) > Edges inside level

» Backwards edges
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Proof (sketch) of Edmonds-Karp (continued)

Suppose s — t distance is d.
“Lay out” residual graph in levels by BFS (distance from s)

L, L, Ls Ly Ls Le
Edge types:
» Forward edges: 1 level

» Edges inside level

» Backwards edges

What happens when we choose a shortest augmenting path?
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Suppose s — t distance is d.
“Lay out” residual graph in levels by BFS (distance from s)
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Proof (sketch) of Edmonds-Karp (continued)

Suppose s — t distance is d.
“Lay out” residual graph in levels by BFS (distance from s)

L, L, Ls Ly Ls Le
Edge types:
» Forward edges: 1 level

O » Edges inside level

» Backwards edges

What happens when we choose a shortest augmenting path? Only uses forward edges!
> At least 1 forward edge gets removed, replaced with backwards edge.

» No backwards edges turned forward
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Proof (sketch) of Edmonds-Karp (continued)

Suppose s — t distance is d.
“Lay out” residual graph in levels by BFS (distance from s)

L, L, Ls Ly Ls Le
Edge types:
» Forward edges: 1 level

> Edges inside level

» Backwards edges

What happens when we choose a shortest augmenting path? Only uses forward edges!
> At least 1 forward edge gets removed, replaced with backwards edge.
» No backwards edges turned forward

So after m iterations (same layout): no path using only forward edges == distance larger
than d!
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Finishing Edmonds-Karp

So at most mn iterations. Each iteration unweighted shortest path: BFS, time O(m + n)
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Finishing Edmonds-Karp

So at most mn iterations. Each iteration unweighted shortest path: BFS, time O(m + n)

Total time: O(mn(m + n)) = O(m?n). Independent of F!

Michael Dinitz Lecture 21: Max-Flow Il November 11, 2025 14 /18



Widest Path Algorithm

Algorithm: Ford-Fulkerson, always choose “widest” path.
» Correct, since FF. Running time?
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Widest Path Algorithm

Algorithm: Ford-Fulkerson, always choose “widest” path.
» Correct, since FF. Running time?

Lemma J

In any graph with max s -t flow F, there exists a path from s to t with capacity at least F[/m
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Widest Path Algorithm

Algorithm: Ford-Fulkerson, always choose “widest” path.
» Correct, since FF. Running time?

Lemma |

In any graph with max s -t flow F, there exists a path from s to t with capacity at least F[/m

Proof. |
Let X ={ee E:c(e) < F/m}.
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Widest Path Algorithm

Algorithm: Ford-Fulkerson, always choose “widest” path.
» Correct, since FF. Running time?

In any graph with max s -t flow F, there exists a path from s to t with capacity at least F[/m

Lemma J

Proof.
Let X ={ee E:c(e) < F/m}.

If no s —» t path in G \ X, the Let S = nodes reachable from s in G ~ X.
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Widest Path Algorithm

Algorithm: Ford-Fulkerson, always choose “widest” path.
» Correct, since FF. Running time?

Lemma |
In any graph with max s -t flow F, there exists a path from s to t with capacity at least F[/m

Proof. |
Let X ={ee E:c(e) < F/m}.
If no s — t path in G~ X, then X an (edge) cut. Let S = nodes reachable from s in G \ X.

cap(S, 5) < cap(X) = Z cle)<m-(F/m)=F
ecX
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Widest Path Algorithm

Algorithm: Ford-Fulkerson, always choose “widest” path.
» Correct, since FF. Running time?

Lemma |
In any graph with max s -t flow F, there exists a path from s to t with capacity at least F[/m

Proof. |
Let X ={ee E:c(e) < F/m}.
If no s — t path in G~ X, then X an (edge) cut. Let S = nodes reachable from s in G \ X.

cap(S, 5) < cap(X) = Z cle)<m-(F/m)=F
ecX

— min (s, t) cut < cap(S,S) < F.
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Widest Path Algorithm

Algorithm: Ford-Fulkerson, always choose “widest” path.
» Correct, since FF. Running time?

Lemma |
In any graph with max s -t flow F, there exists a path from s to t with capacity at least F[/m

Proof. |
Let X ={ee E:c(e) < F/m}.
If no s — t path in G~ X, then X an (edge) cut. Let S = nodes reachable from s in G \ X.

cap(S, 5) < cap(X) = Z cle)<m-(F/m)=F
ecX

—= min (s, t) cut < cap(S,S) < F. Contradiction.
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Widest Path Algorithm

Algorithm: Ford-Fulkerson, always choose “widest” path.
» Correct, since FF. Running time?

Lemma |
In any graph with max s -t flow F, there exists a path from s to t with capacity at least F[/m

Proof. |
Let X ={ee E:c(e) < F/m}.
If no s — t path in G~ X, then X an (edge) cut. Let S = nodes reachable from s in G \ X.

cap(S,§) < cap(X) = Z cle)<m-(F/m)=F
ecX

—= min (s, t) cut < cap(S,S) < F. Contradiction.
== 3Js — t path P in G\ X: every edge of P has capacity at least F/m []
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Widest Path Algorithm

Algorithm: Ford-Fulkerson, always choose “widest” path.
» Correct, since FF. Running time?

Lemma |
In any graph with max s -t flow F, there exists a path from s to t with capacity at least F[/m

Proof. |

Let X ={ee E:c(e) < F/m}.
If no s — t path in G~ X, then X an (edge) cut. Let S = nodes reachable from s in G \ X.

cap(S,§) < cap(X) = Z cle)<m-(F/m)=F
ecX

—= min (s, t) cut < cap(S,S) < F. Contradiction.
== 3Js — t path P in G\ X: every edge of P has capacity at least F/m []

Does this implies at most m iterations?
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Running Time Il

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of is at most
O(mlogF)

Michael Dinitz Lecture 21: Max-Flow Il November 11, 2025 16 /18



Running Time |

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of is at most
O(mlogF)

How much flow remains to be be sent after iteration i?
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Running Time |

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of is at most
O(mlogF)

How much flow remains to be be sent after iteration i?

» i =0:
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Running Time |

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of is at most
O(mlogF)

How much flow remains to be be sent after iteration i?
» 1=0: F
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Running Time Il

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of is at most
O(mlogF)

How much flow remains to be be sent after iteration i?
» 1=0: F

» | =1: Sent at least F/m, so at most F - F/m = F(1 -1/m) remaining

f\l (evd 2 w ) /:_(/’/, — ’\/1(:—(//;',\)
= (1-4) FUI-=)

_ v 2

ey
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Running Time |

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of is at most
O(mlogF)

How much flow remains to be be sent after iteration i?
» 1=0: F
» | =1: Sent at least F/m, so at most F - F/m = F(1 -1/m) remaining

> j=2: Sent at least R/m if R was remaining after iteration 1, so at most
R-R/m=R(1-1/m) < F(1-1/m)? remaining
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Running Time |

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of is at most
O(mlogF)

How much flow remains to be be sent after iteration i7
» i=0: F
» | =1: Sent at least F/m, so at most F - F/m = F(1 -1/m) remaining
> j=2: Sent at least R/m if R was remaining after iteration 1, so at most
R-R/m=R(1-1/m) < F(1-1/m)? remaining

By induction: after iteration i, at most F(1-1/m)’ flow remaining to be sent.
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Running Time |

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of is at most
O(mlogF)

How much flow remains to be be sent after iteration i7
» i=0: F
» | =1: Sent at least F/m, so at most F - F/m = F(1 -1/m) remaining
> j=2: Sent at least R/m if R was remaining after iteration 1, so at most
R-R/m=R(1-1/m) < F(1-1/m)? remaining

By induction: after iteration i, at most F(1-1/m)’ flow remaining to be sent.
Super useful inequality: 1+ x <e* forall xeR
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Running Time |

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of is at most

O(mlog F)

How much flow remains to be be sent after iteration i7
» i=0: F
» | =1: Sent at least F/m, so at most F - F/m = F(1 -1/m) remaining
> j=2: Sent at least R/m if R was remaining after iteration 1, so at most
R-R/m=R(1-1/m) < F(1-1/m)? remaining
By induction: after iteration i, at most F(1-1/m)’ flow remaining to be sent.
Super useful inequality: 1+ x < e* for all xe R
== If i > mIn F, amount remaining to be sent at most

F(1-1/m) < F(1-1/m)™"F < F(eT/m)ymnF - F.e"nF -1

But all capacities integers, so must be finished!
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Finishing up

Modified version of Dijkstra: find widest path in O(mlogn) time
> Total time O(mlogn-mlogF) = O(m?lognlog F)

> Polynomial timel!
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Finishing up

Modified version of Dijkstra: find widest path in O(mlogn) time
> Total time O(mlogn-mlogF) = O(m?lognlog F)

> Polynomial timel!

Question: can we get running time independent of F?

> Strongly polynomial-time algorithm.
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Extensions

Many better algorithms for max-flow: blocking flows (Dinitz's algorithm (not me)),
push-relabel algorithms, etc.
> CLRS has a few of these.

» State of the art:

> Strongly polynomial: O(mn). Orlin [2013] & King, Rao, Tarjan [1994]
> Weakly Polynomial: O(m'*°(!) log U) (where U is maximum capacity). Chen, Kyng, Liu,
Peng, Gutenberg and Sachdeva [2022]

Many other variants of flows, some of which are just s — t max flow in disguise!

> Min-Cost Max-Flow: every edge also has a cost. Find minimum cost max-flow. Can be
solved with just normal max flow!
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