
Lecture 22: Linear Programming

Michael Dinitz

November 13, 2025
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 1 / 20

 



Introduction

Today: What, why, and juste a taste of how

� Entire course on linear programming over in AMS. Super important topic!

� Fast algorithms in theory and in practice.

Why: Even more general than max-flow, can still be solved in polynomial time!

� Max flow important in its own right, but also because it can be used to solve many other
things (max bipartite matching)

� Linear programming: important in its own right, but also even more general than
max-flow.

� Can model many, many problems!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 2 / 20



Introduction

Today: What, why, and juste a taste of how

� Entire course on linear programming over in AMS. Super important topic!

� Fast algorithms in theory and in practice.

Why: Even more general than max-flow, can still be solved in polynomial time!

� Max flow important in its own right, but also because it can be used to solve many other
things (max bipartite matching)

� Linear programming: important in its own right, but also even more general than
max-flow.

� Can model many, many problems!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 2 / 20



Example: Planning Your Week

168 hours in a week. How much time to spend:

� Studying (S)

� Partying (P)

� Everything else (E )

Constraints:

� E ≥ 56 (at least 8 hours/day sleep,
shower, etc.)

� P + E ≥ 70 (need to stay sane)

� S ≥ 60 (to pass your classes)

� 2S + E − 3P ≥ 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

� Yes! S = 80, P = 20, E = 68
Question: Suppose “happiness” is 2P + 3E . Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 3 / 20



Example: Planning Your Week

168 hours in a week. How much time to spend:

� Studying (S)

� Partying (P)

� Everything else (E )

Constraints:

� E ≥ 56 (at least 8 hours/day sleep,
shower, etc.)

� P + E ≥ 70 (need to stay sane)

� S ≥ 60 (to pass your classes)

� 2S + E − 3P ≥ 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

� Yes! S = 80, P = 20, E = 68
Question: Suppose “happiness” is 2P + 3E . Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 3 / 20



Example: Planning Your Week

168 hours in a week. How much time to spend:

� Studying (S)

� Partying (P)

� Everything else (E )

Constraints:

� E ≥ 56 (at least 8 hours/day sleep,
shower, etc.)

� P + E ≥ 70 (need to stay sane)

� S ≥ 60 (to pass your classes)

� 2S + E − 3P ≥ 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

� Yes! S = 80, P = 20, E = 68
Question: Suppose “happiness” is 2P + 3E . Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 3 / 20



Example: Planning Your Week

168 hours in a week. How much time to spend:

� Studying (S)

� Partying (P)

� Everything else (E )

Constraints:

� E ≥ 56 (at least 8 hours/day sleep,
shower, etc.)

� P + E ≥ 70 (need to stay sane)

� S ≥ 60 (to pass your classes)

� 2S + E − 3P ≥ 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

� Yes! S = 80, P = 20, E = 68

Question: Suppose “happiness” is 2P + 3E . Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 3 / 20



Example: Planning Your Week

168 hours in a week. How much time to spend:

� Studying (S)

� Partying (P)

� Everything else (E )

Constraints:

� E ≥ 56 (at least 8 hours/day sleep,
shower, etc.)

� P + E ≥ 70 (need to stay sane)

� S ≥ 60 (to pass your classes)

� 2S + E − 3P ≥ 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

� Yes! S = 80, P = 20, E = 68
Question: Suppose “happiness” is 2P + 3E . Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 3 / 20



Linear Programming

Input (a “linear program”):

� n variables x1, . . . ,xn (take values in R)� m non-strict linear inequalities in these variables (constraints)� E.g.: 3x1 + 4x2 ≤ 6, 0 ≤ x1 ≤ 3 x2 − 3x3 + 2x7 = 17� Not allowed (examples): x2x3 ≥ 5, x4 < 2, x5 + log x2 ≥ 4� Possibly a linear objective function� max2x3 − 4x5, min
5

2
x4 + x2, . . .

Goals:

� Feasibility: Find values for x ’s that satisfy all constraints

� Optimization: Find feasible solutions maximizing/minimizing objective function

Both achievable in polynomial time, reasonably fast!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 4 / 20

c files

may stiflty 7 2
1 f 11012111004



Planning your week as an LP

Variables: P,E ,S

max 2P + E

subject to E ≥ 56
S ≥ 60
2S + E − 3P ≥ 150
P + E ≥ 70
P + S + E = 168
P ≥ 0
S ≥ 0
E ≥ 0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 5 / 20



Planning your week as an LP

Variables: P,E ,S

max 2P + E

subject to E ≥ 56
S ≥ 60
2S + E − 3P ≥ 150
P + E ≥ 70
P + S + E = 168
P ≥ 0
S ≥ 0
E ≥ 0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 5 / 20



Planning your week as an LP

Variables: P,E ,S

max 2P + E

subject to E ≥ 56
S ≥ 60
2S + E − 3P ≥ 150
P + E ≥ 70

P + S + E = 168
P ≥ 0
S ≥ 0
E ≥ 0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 5 / 20



Planning your week as an LP

Variables: P,E ,S

max 2P + E

subject to E ≥ 56
S ≥ 60
2S + E − 3P ≥ 150
P + E ≥ 70
P + S + E = 168
P ≥ 0
S ≥ 0
E ≥ 0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 5 / 20



Planning your week as an LP

Variables: P,E ,S

max 2P + E

subject to E ≥ 56
S ≥ 60
2S + E − 3P ≥ 150
P + E ≥ 70
P + S + E = 168
P ≥ 0
S ≥ 0
E ≥ 0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 5 / 20



Operations Research-style Example

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

� Need to produce at least 400 cars at plant
3 (labor agreement)

� Have 3300 total hours of labor, 4000
units of material

� Environmental law: produce at most
12000 pollution

� Make as many cars as possible

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 6 / 20



Operations Research-style Example

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

� Need to produce at least 400 cars at plant
3 (labor agreement)

� Have 3300 total hours of labor, 4000
units of material

� Environmental law: produce at most
12000 pollution

� Make as many cars as possible

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 6 / 20



OR example as an LP

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables:

xi = # cars produced at plant i , for
i ∈ {1,2,3,4}
Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7 / 20



OR example as an LP

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}

Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7 / 20



OR example as an LP

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}
Objective:

max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7 / 20



OR example as an LP

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}
Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7 / 20



OR example as an LP

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}
Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7 / 20



OR example as an LP

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}
Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400

2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7 / 20



OR example as an LP

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}
Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300

3x1 + 4x2 + 5x3 + 6x4 ≤ 4000
15x1 + 10x2 + 9x3 + 7x4 ≤ 12000

xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7 / 20



OR example as an LP

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}
Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7 / 20



OR example as an LP

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}
Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000

xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7 / 20



OR example as an LP

Four di↵erent manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}
Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7 / 20



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E
Objective: max∑v f (s,v) −∑v f (v , s)
Constraints:

�
v

f (v ,u) −�
v

f (u,v) = 0 ∀u ∈ V � {s, t}
f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8 / 20



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables:

f (e) for all e ∈ E
Objective: max∑v f (s,v) −∑v f (v , s)
Constraints:

�
v

f (v ,u) −�
v

f (u,v) = 0 ∀u ∈ V � {s, t}
f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8 / 20



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E

Objective: max∑v f (s,v) −∑v f (v , s)
Constraints:

�
v

f (v ,u) −�
v

f (u,v) = 0 ∀u ∈ V � {s, t}
f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8 / 20



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E
Objective:

max∑v f (s,v) −∑v f (v , s)
Constraints:

�
v

f (v ,u) −�
v

f (u,v) = 0 ∀u ∈ V � {s, t}
f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8 / 20



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E
Objective: max∑v f (s,v) −∑v f (v , s)

Constraints:

�
v

f (v ,u) −�
v

f (u,v) = 0 ∀u ∈ V � {s, t}
f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8 / 20



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E
Objective: max∑v f (s,v) −∑v f (v , s)
Constraints:

�
v

f (v ,u) −�
v

f (u,v) = 0 ∀u ∈ V � {s, t}
f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8 / 20



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E
Objective: max∑v f (s,v) −∑v f (v , s)
Constraints:

�
v

f (v ,u) −�
v

f (u,v) = 0 ∀u ∈ V � {s, t}

f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8 / 20



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E
Objective: max∑v f (s,v) −∑v f (v , s)
Constraints:

�
v

f (v ,u) −�
v

f (u,v) = 0 ∀u ∈ V � {s, t}
f (e) ≤ c(e) ∀e ∈ E

f (e) ≥ 0 ∀e ∈ E
So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8 / 20



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E
Objective: max∑v f (s,v) −∑v f (v , s)
Constraints:

�
v

f (v ,u) −�
v

f (u,v) = 0 ∀u ∈ V � {s, t}
f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8 / 20



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E
Objective: max∑v f (s,v) −∑v f (v , s)
Constraints:

�
v

f (v ,u) −�
v

f (u,v) = 0 ∀u ∈ V � {s, t}
f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8 / 20



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

� Directed graph G = (V ,E)
� Capacities c ∶ E → R≥0� k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) −∑v fi (v , si ))

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9 / 20



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

� Directed graph G = (V ,E)
� Capacities c ∶ E → R≥0� k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) −∑v fi (v , si ))

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9 / 20



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

� Directed graph G = (V ,E)
� Capacities c ∶ E → R≥0� k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables:

fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) −∑v fi (v , si ))

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9 / 20



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

� Directed graph G = (V ,E)
� Capacities c ∶ E → R≥0� k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) −∑v fi (v , si ))

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9 / 20

h



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

� Directed graph G = (V ,E)
� Capacities c ∶ E → R≥0� k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective:

max∑k
i=1 (∑v fi (si ,v) −∑v fi (v , si ))

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9 / 20



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

� Directed graph G = (V ,E)
� Capacities c ∶ E → R≥0� k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) −∑v fi (v , si ))

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9 / 20



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

� Directed graph G = (V ,E)
� Capacities c ∶ E → R≥0� k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) −∑v fi (v , si ))

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9 / 20



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

� Directed graph G = (V ,E)
� Capacities c ∶ E → R≥0� k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) −∑v fi (v , si ))

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}

k�
i=1

fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9 / 20



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

� Directed graph G = (V ,E)
� Capacities c ∶ E → R≥0� k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) −∑v fi (v , si ))

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9 / 20



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

� Directed graph G = (V ,E)
� Capacities c ∶ E → R≥0� k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) −∑v fi (v , si ))

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9 / 20



Concurrent Flow

Multicommodity flow, but:

� Also given demands
d ∶ [k]→ R≥0� Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
si to ti for all i ∈ [k]?

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

�
v

fi (si ,v) −�
v

fi (v , si ) ≥ d(i) ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 10 / 20



Concurrent Flow

Multicommodity flow, but:

� Also given demands
d ∶ [k]→ R≥0� Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
si to ti for all i ∈ [k]?

Variables: fi (e) for all e ∈ E and for all i ∈ [k].

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

�
v

fi (si ,v) −�
v

fi (v , si ) ≥ d(i) ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 10 / 20



Concurrent Flow

Multicommodity flow, but:

� Also given demands
d ∶ [k]→ R≥0� Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
si to ti for all i ∈ [k]?

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

�
v

fi (si ,v) −�
v

fi (v , si ) ≥ d(i) ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 10 / 20



Concurrent Flow

Multicommodity flow, but:

� Also given demands
d ∶ [k]→ R≥0� Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
si to ti for all i ∈ [k]?

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

�
v

fi (si ,v) −�
v

fi (v , si ) ≥ d(i) ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 10 / 20



Concurrent Flow

Multicommodity flow, but:

� Also given demands
d ∶ [k]→ R≥0� Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
si to ti for all i ∈ [k]?

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

�
v

fi (si ,v) −�
v

fi (v , si ) ≥ d(i) ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 10 / 20



Maximum Concurrent Flow

If answer is no: how much
do we need to scale down
demands so that there is a
multicommodity flow?

Variables:

� fi (e) for all e ∈ E and for all i ∈ [k].
� �

Objective: max�

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

�
v

fi (si ,v) −�
v

fi (v , si ) ≥ �d(i) ∀i ∈ [k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 11 / 20



Maximum Concurrent Flow

If answer is no: how much
do we need to scale down
demands so that there is a
multicommodity flow?

Variables:

� fi (e) for all e ∈ E and for all i ∈ [k].
� �

Objective: max�

Constraints:

�
v

fi (v ,u) −�
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V � {si , ti}
k�

i=1
fi (e) ≤ c(e) ∀e ∈ E
fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

�
v

fi (si ,v) −�
v

fi (v , si ) ≥ �d(i) ∀i ∈ [k]
Michael Dinitz Lecture 22: Linear Programming November 13, 2025 11 / 20



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0
dv ≤ du + `(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let �d∗ denote the optimal LP solution. Then d
∗
t = d(s, t)

Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible �⇒ d
∗
t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d

∗
vi
≤ d(s,vi ) for all i

Base case: i = 0 ✓
Inductive step: d

∗
vi
≤ d

∗
vi−1 + `(vi−1,vi ) ≤ d(s,vi−1) + `(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 12 / 20

EAT



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0
dv ≤ du + `(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let �d∗ denote the optimal LP solution. Then d
∗
t = d(s, t)

Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible �⇒ d
∗
t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d

∗
vi
≤ d(s,vi ) for all i

Base case: i = 0 ✓
Inductive step: d

∗
vi
≤ d

∗
vi−1 + `(vi−1,vi ) ≤ d(s,vi−1) + `(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 12 / 20



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0
dv ≤ du + `(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let �d∗ denote the optimal LP solution. Then d
∗
t = d(s, t)

Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible �⇒ d
∗
t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d

∗
vi
≤ d(s,vi ) for all i

Base case: i = 0 ✓
Inductive step: d

∗
vi
≤ d

∗
vi−1 + `(vi−1,vi ) ≤ d(s,vi−1) + `(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 12 / 20



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0
dv ≤ du + `(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let �d∗ denote the optimal LP solution. Then d
∗
t = d(s, t)

Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible �⇒ d
∗
t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d

∗
vi
≤ d(s,vi ) for all i

Base case: i = 0 ✓
Inductive step: d

∗
vi
≤ d

∗
vi−1 + `(vi−1,vi ) ≤ d(s,vi−1) + `(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 12 / 20

ÉWVty



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0
dv ≤ du + `(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let �d∗ denote the optimal LP solution. Then d
∗
t = d(s, t)

Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible �⇒ d
∗
t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d

∗
vi
≤ d(s,vi ) for all i

Base case: i = 0 ✓

Inductive step: d
∗
vi
≤ d

∗
vi−1 + `(vi−1,vi ) ≤ d(s,vi−1) + `(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 12 / 20



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0
dv ≤ du + `(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let �d∗ denote the optimal LP solution. Then d
∗
t = d(s, t)

Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible �⇒ d
∗
t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d

∗
vi
≤ d(s,vi ) for all i

Base case: i = 0 ✓
Inductive step: d

∗
vi
≤ d

∗
vi−1 + `(vi−1,vi ) ≤ d(s,vi−1) + `(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 12 / 20

smelly

intuitive step



Algorithms for LPs

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 13 / 20



Geometry

To get intuition: think of LPs geometrically

� Space: Rn (one dimension per variable

� Linear constraint: halfspace (one side of a hyperplane)

� Feasible region: intersection of halfspaces. Convex Polytope (usually just called a
polytope)

Example: planning your week

� 3 variables S,P,E so R3

� But S +P + E = 168 �⇒
S = 168 −P − E

� Make this substitution, get
R2

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 14 / 20

ftp



Geometry

To get intuition: think of LPs geometrically

� Space: Rn (one dimension per variable

� Linear constraint: halfspace (one side of a hyperplane)

� Feasible region: intersection of halfspaces. Convex Polytope (usually just called a
polytope)

Example: planning your week

� 3 variables S,P,E so R3

� But S +P + E = 168 �⇒
S = 168 −P − E

� Make this substitution, get
R2

Algoritiganning
Think of LPs geometrically

in

space IR

constraint hyperplane halfspace

feasible region intersection of halfspaceg

p ope

EI planning your week

3 variahle Ibf so 112

Stat 168 5 168 P E
7Go AC 1108 25 IptC2150

2468 f El Ihf 150
PtE270 Spt EE 186

E
T

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 14 / 20



Geometry (cont’d)

Algoritiganning
Think of LPs geometrically

in

space IR

constraint hyperplane halfspace

feasible region intersection of halfspaceg

p ope

EI planning your week

3 variahle Ibf so 112

Stat 168 5 168 P E
7Go AC 1108 25 IptC2150

2468 f El Ihf 150
PtE270 Spt EE 186

E
T

Objective: feasible solution “furthest” along specified direction� maxP: (56,26)� max2P + E : (88.5,19.5)

Main theorem: optimal solution is always at a “corner” (also called a “vertex”)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 15 / 20

F



Geometry (cont’d)

Algoritiganning
Think of LPs geometrically

in

space IR

constraint hyperplane halfspace

feasible region intersection of halfspaceg

p ope

EI planning your week

3 variahle Ibf so 112

Stat 168 5 168 P E
7Go AC 1108 25 IptC2150

2468 f El Ihf 150
PtE270 Spt EE 186

E
T

Objective: feasible solution “furthest” along specified direction� maxP: (56,26)� max2P + E : (88.5,19.5)
Main theorem: optimal solution is always at a “corner” (also called a “vertex”)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 15 / 20



Simplex Algorithm [Dantzig 1940’s]

Initialize �x to an arbitrary corner
while(a neighboring corner �x ′ of �x has better objective value) {�x ← �x ′
}
return �x

max p 56,261

nax Htt 88.5 19.5

Oct solution always at a corner vertex

Simplex Alg Dantzig 1940s

Start at arbitrary corner

look at all neighboring corners

If any of them better more to best

Repeat until n neighboring corner better

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 16 / 20



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

� Objective linear �⇒ optimal solution at a corner

� Feasible set convex + linear objective �⇒ any local opt is global opt

�⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

� Slow in theory� Fast in practice!� Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

� Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 / 20



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

� Objective linear �⇒ optimal solution at a corner

� Feasible set convex + linear objective �⇒ any local opt is global opt

�⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

� Slow in theory� Fast in practice!� Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

� Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 / 20



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

� Objective linear �⇒ optimal solution at a corner

� Feasible set convex + linear objective �⇒ any local opt is global opt

�⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

� Slow in theory� Fast in practice!� Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

� Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 / 20



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

� Objective linear �⇒ optimal solution at a corner

� Feasible set convex + linear objective �⇒ any local opt is global opt

�⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

� Slow in theory

� Fast in practice!� Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

� Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 / 20



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

� Objective linear �⇒ optimal solution at a corner

� Feasible set convex + linear objective �⇒ any local opt is global opt

�⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

� Slow in theory� Fast in practice!� Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

� Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 / 20



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

� Objective linear �⇒ optimal solution at a corner

� Feasible set convex + linear objective �⇒ any local opt is global opt

�⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

� Slow in theory� Fast in practice!� Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

� Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 / 20



Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question �⇒ can also solve optimization

� Start with ellipsoid E containing feasible
region P (if it exists)

� Let x be center of E� While(x not feasible)� Find a hyperplane H through x such
that all of P on one side� Let E

′ be the half-ellipsoid of E defined
by H� Find a new ellipsoid Ê containing E

′ so
that vol(Ê) ≤ �1 − 1

n �vol(E)� Let E = Ê and let x be center of Ê

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 18 / 20



Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question �⇒ can also solve optimization

� Start with ellipsoid E containing feasible
region P (if it exists)

� Let x be center of E� While(x not feasible)� Find a hyperplane H through x such
that all of P on one side� Let E

′ be the half-ellipsoid of E defined
by H� Find a new ellipsoid Ê containing E

′ so
that vol(Ê) ≤ �1 − 1

n �vol(E)� Let E = Ê and let x be center of Ê

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 18 / 20



Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most(1 − 1�n) of the volume of the original

� Using inequality from last time: after n iterations, volume drops by �1 − 1

n �n ≤ 1�e factor

� Crucial fact: if volume “too small”, P must be empty

�⇒ Polynomial time!

In practice: horrible.

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 19 / 20



Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most(1 − 1�n) of the volume of the original

� Using inequality from last time: after n iterations, volume drops by �1 − 1

n �n ≤ 1�e factor

� Crucial fact: if volume “too small”, P must be empty

�⇒ Polynomial time!

In practice: horrible.

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 19 / 20



Interior Point Methods (Karmarkar’s Algorithm)

Fast in both theory and practice!

If volume too small P does not exist

KarmarkaisAlg linterior point methods

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 20 / 20


