Lecture 22: Linear Programming

Michael Dinitz

November 13, 2025
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 1/20

Introduction

Today: What, why, and justé a taste of how
> Entire course on linear programming over in AMS. Super important topic!

» Fast algorithms in theory and in practice.

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 2/20

Introduction

Today: What, why, and juste a taste of how
> Entire course on linear programming over in AMS. Super important topic!

» Fast algorithms in theory and in practice.

Why: Even more general than max-flow, can still be solved in polynomial time!

» Max flow important in its own right, but also because it can be used to solve many other
things (max bipartite matching)

» Linear programming: important in its own right, but also even more general than
max-flow.

» Can model many, many problems!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 2/20

Example: Planning Your Week

168 hours in a week. How much time to spend:

> Studying (S)
> Partying (P)
> Everything else (E)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 3/20

Example: Planning Your Week

168 hours in a week. How much time to spend: Constraints:
> E >56 (at least 8 hours/day sleep,

> Studying (S) shower, etc.)
> Partying (P) » P+ E >70 (need to stay sane)
> Everything else (E) > § > 60 (to pass your classes)

» 25+ E-3P > 150 (too much partying
requires studying or sleep)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 3/20

Example: Planning Your Week

168 hours in a week. How much time to spend: Constraints:
> E >56 (at least 8 hours/day sleep,

> Studying (S) shower, etc.)
> Partying (P) » P+ E >70 (need to stay sane)
> Everything else (E) > § > 60 (to pass your classes)

» 25+ E-3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 3/20

Example: Planning Your Week

168 hours in a week. How much time to spend: Constraints:
> E >56 (at least 8 hours/day sleep,

> Studying (S) shower, etc.)
> Partying (P) » P+ E >70 (need to stay sane)
> Everything else (E) > § > 60 (to pass your classes)

» 25+ E-3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?
> Yes! S=80, P=20, E =68

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 3/20

Example: Planning Your Week

168 hours in a week. How much time to spend: Constraints:
> E >56 (at least 8 hours/day sleep,

> Studying (S) shower, etc.)
> Partying (P) » P+ E >70 (need to stay sane)
> Everything else (E) > § > 60 (to pass your classes)

» 25+ E-3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?
> Yes! S=80, P=20, E =68

Question: Suppose “happiness” is 2P + 3E. Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 3/20

Linear Programming

Input (a “linear program™):
> n variables x1,...,x, (take values in R)
> m non-strict linear inequalities in these variables (constraints)

> Eg 3X1+4X2S6, OSX1S3 X2—3X3+2X7§].7
> Not allowed (examples): xax3 > 5, Xz < 2, x5+ log x; > 4
> Possibly a /inear objective function P /. - 77(
> max2x3 — 4xs, min §x4 + Xo, . !] /
¢ . Vl—/mz&}lmﬁf/f/)

Goals: -

-

-

> Feasibility: Find values for x's that satisfy all constraints
> Optimization: Find feasible solutions maximizing/minimizing objective function

Both achievable in polynomial time, reasonably fast!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 4 /20

Planning your week as an LP
Variables: P,E, S

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 5/20

Planning your week as an LP
Variables: P,E, S

max 2P+ E

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 5/20

Planning your week as an LP

Variables: P,E, S

Michael Dinitz

max 2P+ E
subject to E > 56
S>60
2S+E-3P >150
P+E>T70

Lecture 22: Linear Programming

November 13, 2025

5/20

Planning your week as an LP
Variables: P,E, S

max 2P+ E

subject to E > 56
S>60
2S+ E-3P >150
P+E>T70
P+S+E=168
P>0
$>0
E>0

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 5/20

Planning your week as an LP
Variables: P,E, S

max 2P+ E

subject to E > 56
S>60
2S+ E-3P >150
P+E>T70
P+S+E=168
P>0
$>0
E>0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 5/20

Operations Research-style Example

Four different manufacturing plants for making

cars:
labor materials pollution
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 I
Michael Dinitz Lecture 22: Linear Programming

November 13, 2025

6/20

Operations Research-style Example

Four different manufacturing plants for making

> Need to produce at least 400 cars at plant

3 (labor agreement)

15 » Have 3300 total hours of labor, 4000
units of material

10 » Environmental law: produce at most
12000 pollution

Make as many cars as possible

cars:
labor materials pollution
Plant 1 2
Plant 2 3
Plant 3 4
Plant 4 5 I
Michael Dinitz

Lecture 22: Linear Programming November 13, 2025 6/20

OR example as an LP

Four different manufacturing plants for making Variables:

cars:
labor materials pollution
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 I

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7/20

OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
D Xj = ,

cars: ie{l1,2,3,4)
labor materials pollution
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 I

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7/20

OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
D Xj = ,

o ie{1,2,3,4)
labor materials pollution Objective:
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7/20

OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
D Xj = ,

o i€{l1,2,3,4}
labor materials pollution Objective: max x1 + xp + X3 + x4
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7/20

OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
D Xj = ,

cars: i e(1.2.3.4)
labor materials pollution Objective: max x; + xp + X3 + X3
Constraints:
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7/20

OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
D Xj = ,

cars: i e(1.2.3.4)
labor materials pollution Objective: max x; + xp + X3 + X3
Constraints:
Plant 1 2 3 15
x3 > 400

Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7/20

OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
D Xj = ,

cars: i e(1.2.3.4)
labor materials pollution Objective: max x; + xp + X3 + X3
Constraints:
Plant 1 2 3 15
x3 > 400
Plant 2 3 4 10 2x1 + 3xp + 4x3 + 5x4 < 3300
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7/20

OR example as an LP

Four different manufacturing plants for making Variables: x:
- 1

cars: ie{l1,2,3,4)
labor materials pollution Objective: max x; + X2 + X3 + X4
Constraints:
Plant 1 2 15
x3 > 400
Plant 2 3 10 2x1 +3xy +4x3 + 5x4 < 3300
3x1 +4x, + 5x3 + 6x4 <4000
Plant 3 | 4 9 1T T EA T
Plant 4 5 v/
Michael Dinitz Lecture 22: Linear Programming November 13, 2025

= # cars produced at plant i, for

7/20

OR example as an LP

Four different manufacturing plants for making Variables: x:
- 1

cars:
labor materials pollution
Plant 1 2 15
Plant 2 3 10
Plant 3 4 9
Plant 4 5 I
Michael Dinitz

Lecture 22: Linear Programming

ie€{l1,2,3,4}
Objective: max x1 + xo + X3 + Xg

Constraints:

x3 > 400
2x1 +3x0 +4x3 + 5x4 < 3300
3x1 +4x> +5x3 + 6x4 <4000
15x1 +10xy + 9x3 + 7x4 < 12000

November 13, 2025

= # cars produced at plant i, for

7/20

OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
D Xj = ,

cars: ie{l1,2,3,4)
labor materials pollution Objective: max x; +x2 + X3 + X3

Constraints:

Plant 1 2 3 15
x3 > 400
Plant 2 3 4 10 2X1 + 3X2 + 4X3 + 5X4 < 3300
4 <4

Plant 3 A . 9 3x1 +4x> +5x3 + 6x4 <4000

15x1 +10xy + 9x3 + 7x4 < 12000
Plant4 | 5 6 7 x; >0 Vie{l,2,3,4}

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 7/20

Max Flow as LP

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8/20

Max Flow as LP

Variables:

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8/20

Max Flow as LP

Variables: f(e) for all e € E

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8/20

Max Flow as LP

Variables: f(e) for all e € E

a 5 c Objective:
0-/\9 0
L0 s
lo U @
({)]
Lo \0/ 20
b L0 d

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8/20

Max Flow as LP

Variables: f(e) for all e € E

a 5 L¢ Objective: maxy, f(s,v)-X, f(v,s)
L0 5)
lo u @
(0
o | 20
f (o d

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8/20

Max Flow as LP

A 5 C
0-/\.9 0
L0 s
lo u @
(0
Lo \0/ 20
b L0 d
Michael Dinitz

Variables: f(e) for all e € E

Objective: max Y, f(s,v)-Y, f(v,s)

Constraints:

Lecture 22: Linear Programming

November 13, 2025

8/20

Max Flow as LP

A 5 C
0-/\.9 0
L0 s
lo u @
(0
Lo \0/ 20
b L0 d
Michael Dinitz

Variables: f(e) for all e € E

Objective: max Y, f(s,v)-Y, f(v,s)

Constraints:

Y f(v,u) =) f(u,v) 50

—

Lecture 22: Linear Programming

Yue V~{s,t}

November 13, 2025

8/20

Max Flow as LP

A 5 C
0-/\9 0
L0 s
lo u @
(0
Lo \0/ 20
b L0 d
Michael Dinitz

Variables: f(e) for all e € E
Objective: max Y, f(s,v)-Y, f(v,s)

Constraints:

Y f(v,u)-) f(u,v)=0

Lecture 22: Linear Programming

f(e) <c(e)

Yue V~{s,t}

November 13, 2025

Vee E

8/20

Max Flow as LP

Variables: f(e) for all e € E

a § ¢ Objective: maxy, f(s,v)-X, f(v,s)

o—2 39
L0 s Constraints:

o s @

w/ > f(v,u)-3 F(u,v)=0 Vue Vs, t}

h\/ 20 Y Y

O/fTOJ f(e) <c(e) Vee E

b f(e)>0 Vee E

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8/20

Max Flow as LP

Variables: f(e) for all e € E

a § ¢ Objective: maxy, f(s,v)-X, f(v,s)

o—2 39
L0 s Constraints:

o s @

w/ > f(v,u)-3 F(u,v)=0 Vue Vs, t}

h\/ 20 Y Y

O/fTOJ f(e) <c(e) Vee E

b f(e)>0 Vee E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 8/20

Multicommodity Flow

Generalization of max-flow with
multiple commodities that can't mix,
but use up same capacity

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9/20

Multicommodity Flow

Generalization of max-flow with
multiple commodities that can't mix,
but use up same capacity

Setup:
> Directed graph G = (V, E)
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz

Lecture 22: Linear Programming

November 13, 2025

9/20

Multicommodity Flow

Generalization of max-flow with Variables:
multiple commodities that can't mix,
but use up same capacity

Setup:
> Directed graph G = (V, E)
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 22: Linear Programming

November 13, 2025

9/20

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can't mix, Flow of commodity i on edge e

but use up same capacity

Setup:
> Directed graph G = (V, E)
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9/20

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can't mix, Flow of commodity i on edge e

but use up same capacity

Objective:
Setup:

> Directed graph G = (V, E)
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9/20

Multicommodity Flow

Generalization of max-flow with

but use up same capacity

Setup:
> Directed graph G = (V, E)
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz

Lecture 22: Linear Programming

Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can't mix, Flow of commodity i on edge e

Objective: max Y~ (X, fi(si,v) - X, fi(v,si))

November 13, 2025

9/20

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can't mix, Flow of commodity i on edge e

but use up same capacity

Objective: max Y~ (X, fi(si,v) - X, fi(v,si))
Setup:

» Directed graph G = (V, E) Constraints:
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9/20

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can't mix, Flow of commodity i on edge e

but use up same capacity

Objective: max Y~ (X, fi(si,v) - X, fi(v,si))

Setup:
» Directed graph G = (V, E) Constraints:
> CapaC|t|es C:E—>R20 Zf,-(v,u)—Zf,-(u,v)=0 Vie[k], VUEV\{S,',t,'}
> k source-sink pairs {(sj, t;) }ic[k] v v

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9/20

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can't mix, Flow of commodity i on edge e

but use up same capacity

Objective: max Y~ (X, fi(si,v) - X, fi(v,si))

Setup:
» Directed graph G = (V, E) Constraints:
> CapaC|t|es C:E—>R20 Zf,-(v,u)—Zf,-(u,v)=O Vie[k], VUEV\{S,',t,'}
> k source-sink pairs {(sj, t;) }ic[k] v v

k
Goal: send flow of commodity i from Z; fi(e) < c(e) VeeE

s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9/20

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can't mix, Flow of commodity i on edge e

but use up same capacity

Objective: max Y~ (X, fi(si,v) - X, fi(v,si))

Setup:
» Directed graph G = (V, E) Constraints:
> CapaC|t|es C:E—>R20 Zf,-(v,u)—Zf,-(u,v)=O Vie[k], VUEV\{S,',t,'}
> k source-sink pairs {(sj, t;) }ic[k] v v
k
Goal: send flow of commodity i from Z; fi(e) < c(e) VeckE
1=
s; to t;, max total flow sent across all f.(e) 20 VecE, Viel[k]
i < ’

commodities

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 9/20

Concurrent Flow

Multicommodity flow, but:

> Also given demands
d: [k] - RZO

» Question: Is there a
multicommodity flow
that sends at least d (i)
commodity-i flow from
s; to t; for all 1 € [k]?

Michael Dinitz

Lecture 22: Linear Programming

November 13, 2025

10 /20

Concurrent Flow

Multicommodity flow, but:

> Also given demands
d: [k] - RZO

» Question: Is there a
multicommodity flow
that sends at least d (i)
commodity-i flow from
s; to t; for all 1 € [k]?

Michael Dinitz

Lecture 22: Linear Programming

Variables: f;(e) for all e € E and for all i € [k].

November 13, 2025

10 /20

Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but: _
Constraints:

> Also given demands
d: [k] - RZO

» Question: Is there a
multicommodity flow
that sends at least d (i)
commodity-i flow from
s; to t; for all 1 € [k]?

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 10/20

Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but: _
_ Constraints:
> Also given demands

d: [k] - Ry S fi(v,u) =Y fi(u,v) =0 Vielk], Vue V~{s;, t;}
> Question: Is there a v v
multicommodity flow

that sends at least d (i)

commodity-i flow from .
fi(e) >0 Vee E, Vielk
s; to t; for all i € [k]? (e) ecE, Vielk]

Zk:f,-(e) <c(e) Veec E
i=1

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 10/20

Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but: _
_ Constraints:
> Also given demands

d: [k] - Ry Y fi(vyu)-) fi(u,v)=0 Vielk], VueV ~{s;,t;}
> Question: Is there a v v

multicommodity flow k

that sends at least d (i) '; fi(e) < c(e) veck

commodity-i flow from f(e) >0 Ve cE, Vie[k]

s; to t; for all 1 € [k]?

> fi(si,v) =) fi(v,s;) 2 d(i) Vie[k]

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 10/20

Maximum Concurrent Flow

If answer is no: how much
do we need to scale down

demands so that there is a
multicommodity flow?

Michael Dinitz

Lecture 22: Linear Programming

November 13, 2025

11/20

Maximum Concurrent Flow

If answer is no: how much
do we need to scale down

demands so that there is a
multicommodity flow?

Michael Dinitz

Variables:

> f;(e) for all e € E and for all i € [k].

> A
Objective: max \

Constraints:

> fi(v,u) =) fi(u,v) =0

" fi(e) < ce)
i=1

fi(e)>0
Y. fi(si,v) =) fi(v,s;) > Ad(i)

Lecture 22: Linear Programming

Vielk], Yue V~{s;, t;}

Vee E

Vee E, Vie[k]

November 13, 2025

Vi e [k]

11/20

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+¢€(u,v) V(u,v) e E
w
. L
; ;
N\
2\

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 12/20

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+£(u,v) V(u,v) € E

Correctness Theorem: Let d* denote the optimal LP solution. Then d: =d(s,t)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 12/20

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+£(u,v) V(u,v) € E

Correctness Theorem: Let d* denote the optimal LP solution. Then d: =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all v e V. Feasible = d; >d; =d(s,t).

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 12/20

Shortest s - t path

]
St +< v

Very surprising LP! lc

Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+£(u,v) V(u,v) € E

Correctness Theorem: Let d* denote the optimal LP solution. Then d: =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all v e V. Feasible = d; >d; =d(s,t).

<: Let P=(s=wvy,Vvi,...,Vg =1t) be shortest s > t path.
Prove by induction: dy. < d(s,v;) for all i

Michael Dinitz Lecture 22: Linear Programming November 13, 2025

12 /20

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+£(u,v) V(u,v) € E

Correctness Theorem: Let d* denote the optimal LP solution. Then d: =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all v e V. Feasible = d; >d; =d(s,t).

<: Let P=(s=wvy,Vvi,...,Vg =1t) be shortest s > t path.
Prove by induction: dy. < d(s,v;) for all i
Base case: i =0 v

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 12/20

Shortest s — t path Uy

/<o
/\/\/\/V lc

Very surprising LP! (= » -
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+£(u,v) V(u,v) € E

Correctness Theorem: Let d* denote the optimal LP solution. Then d: =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all ve V. Feasible = d; >d; =d(s,t).

<: Let P=(s=wvy,Vvi,...,Vg =1t) be shortest s > t path.

Prove by induction: dy. < d(s,v;) for all i)

Base case: i =0 v Yah Lechig 5tr

Inductive step: dj. <dy. +£(vj_1,v;) <d(s,vj1)+£€(vi_1,v;) =d(s,v;)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025

12 /20

Algorithms for LPs

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 13/20

Geometry

To get intuition: think of LPs geometrically
> Space: R" (one dimension per variable
> Linear constraint: halfspace (one side of a hyperplane)

> Feasible region: intersection of halfspaces. Convex Polytope (usually just called a
polytope)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 14 /20

Geometry

To get intuition: think of LPs geometrically
> Space: R" (one dimension per variable
> Linear constraint: halfspace (one side of a hyperplane)

> Feasible region: intersection of halfspaces. Convex Polytope (usually just called a

polytope)
E le: planni k §26097E =107 (s626) (88.5,19.5) 25-1p €2 I5o
xample: planning your wee S 1€ =
pie: planning y = CANRrE
» 3 variables S, P, E so R3 = 2
variables S, F, E so prE2 70~,/%/Z// ______ SR 456
Z=—_—_—_—— == -
> But S+P+E =168 — P /////Z%
S-168-P-E 72 T
- &
. . . T2 < 3
» Make this substitution, get ZZ—_—_—_—_ =~ _
R2 o __ _
56 170 108 186

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 14 /20

BN

& o
o=

(\ O
Q@N W7

\ \
R SR
~ 3 ,/A/
o5t ///
~ \/— ,,/////////

%/W////
AN // //

2

///N////

///W/

5 19.5)
108

56 70

3

5zeo»affe < w%
2
P

Geometry (cont'd)

4 S

“furthest” along specified direction

Objective: feasible solution

> max P: (56,26)

> max2P + E: (88.5,19.5)

15 /20

November 13, 2025

Lecture 22: Linear Programming

Michael Dinitz

Geometry (cont'd)

§ 200RE 10 (6

)
[\®]
©))
SN
~
o0
. 00
(9]
S
\O
W
N

ZS"?/’,} ¢ > Iso

oo
T g hew
/)
BHE @ AV
== __________ =
P B "
= 7 : / ;
37.2// : /&//é
s N ; —
=
> _ 3
56 10 108 186
£2 6 E

Objective: feasible solution “furthest” along specified direction
> max P: (56,26)
> max2P + E: (88.5,19.5)

Main theorem: optimal solution is always at a “corner” (also called a “vertex")

Michael Dinitz Lecture 22: Linear Programming November 13, 2025

15 /20

Simplex Algorithm [Dantzig 1940's]

Initialize X to an arbitrary corner

while(a neighboring corner X’ of ¥ has better objective value) {
> >/
X« X

return X

Optimal
solution

Starting

vertex _4

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 16 /20

Simplex Analysis

Theorem: Simplex returns the optimal solution.

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 /20

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

—= Once simplex terminates, at global opt

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 /20

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

—= Once simplex terminates, at global opt

Problem: Exponential number of corners!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 /20

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

—= Once simplex terminates, at global opt

Problem: Exponential number of corners!

> Slow in theory

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 /20

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

—= Once simplex terminates, at global opt

Problem: Exponential number of corners!

> Slow in theory

» Fast in practice!

» Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 /20

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

—= Once simplex terminates, at global opt

Problem: Exponential number of corners!

> Slow in theory

» Fast in practice!

» Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

> Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 17 /20

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question == can also solve optimization

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 18 /20

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question == can also solve optimization

» Start with ellipsoid E containing feasible
region P (if it exists)
> Let x be center of E

> While(x not feasible)

> Find a hyperplane H through x such
that all of P on one side

> Let E’ be the half-ellipsoid of E defined
by H

> Find a new ellipsoid E containing E’ so
that voI(E) < (1 - %) vol (E)

> Let E = E and let x be center of E

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 18 /20

Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most
(1-1/n) of the volume of the original

. . . . : n
> Using inequality from last time: after n iterations, volume drops by (1 — %) < 1/e factor
> Crucial fact: if volume “too small”, P must be empty

—= Polynomial time!

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 19/20

Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most
(1-1/n) of the volume of the original

. . . . : n
> Using inequality from last time: after n iterations, volume drops by (1 — %) < 1/e factor
> Crucial fact: if volume “too small”, P must be empty

—= Polynomial time!

In practice: horrible.

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 19/20

Interior Point Methods (Karmarkar's Algorithm)

Fast in both theory and practice!

A

Simplex Algorithm

Karmarkar’s Algorithm
Optimal solution point

Feasible Region

Michael Dinitz Lecture 22: Linear Programming November 13, 2025 20/20

