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Introduction

Today: What, why, and juste a taste of how
» Entire course on linear programming over in AMS. Super important topic!

» Fast algorithms in theory and in practice.
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Introduction

Today: What, why, and juste a taste of how

» Entire course on linear programming over in AMS. Super important topic!

» Fast algorithms in theory and in practice.

Why: Even more general than max-flow, can still be solved in polynomial time!

» Max flow important in its own right, but also because it can be used to solve many other
things (max bipartite matching)

» Linear programming: important in its own right, but also even more general than
max-flow.

» Can model many, many problems!
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Example: Planning Your Week

168 hours in a week. How much time to spend:

> Studying (S)
> Partying (P)
> Everything else (E)
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Example: Planning Your Week

168 hours in a week. How much time to spend: Constraints:
» E >56 (at least 8 hours/day sleep,

> Studying (S) shower, etc.)
> Partying (P) » P+ E >70 (need to stay sane)
> Everything else (E) > § > 60 (to pass your classes)

» 25+ E-3P > 150 (too much partying
requires studying or sleep)
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Example: Planning Your Week

168 hours in a week. How much time to spend: Constraints:
» E >56 (at least 8 hours/day sleep,

> Studying (S) shower, etc.)
> Partying (P) » P+ E >70 (need to stay sane)
> Everything else (E) > § > 60 (to pass your classes)

» 25+ E-3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

Jessica Sorrell Lecture 22: Linear Programming November 13, 2025 3/20



Example: Planning Your Week

168 hours in a week. How much time to spend: Constraints:
» E >56 (at least 8 hours/day sleep,

> Studying (S) shower, etc.)
> Partying (P) » P+ E >70 (need to stay sane)
> Everything else (E) > § > 60 (to pass your classes)

» 25+ E-3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?
» Yes! S=80, P=20, E =68
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Example: Planning Your Week

168 hours in a week. How much time to spend: Constraints:
» E >56 (at least 8 hours/day sleep,

> Studying (S) shower, etc.)
> Partying (P) » P+ E >70 (need to stay sane)
> Everything else (E) > § > 60 (to pass your classes)

» 25+ E-3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?
» Yes! S=80, P=20, E =68

Question: Suppose “happiness” is 2P + 3E. Can we find a feasible solution maximizing this?
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Linear Programming

Input (a “linear program"):
> n variables x1,...,Xx, (take values in R)
> m non-strict linear inequalities in these variables (constraints)

> Eg 3X1+4X2S6, OSX1S3 X2—3X3+2X7=17

> Not allowed (examples): xax3 > 5, Xa < 2, x5 + log x, > 4
> Possibly a /inear objective function

> max2x3 — 4xs, min §x4 + Xo,

Goals:
> Feasibility: Find values for x's that satisfy all constraints
» Optimization: Find feasible solutions maximizing/minimizing objective function

Both achievable in polynomial time, reasonably fast!
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Planning your week as an LP
Variables: P,E, S
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Planning your week as an LP
Variables: P,E, S

max 2P+ E
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Planning your week as an LP

Variables: P,E, S

Jessica Sorrell

max 2P+ E
subject to E > 56
S>60
2S+ E-3P >150
P+E>70
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Planning your week as an LP
Variables: P,E, S

max 2P+ E

subject to E > 56
S>60
2S+ E-3P >150
P+E>70
P+S+E=168
P>0
$>0
E>0
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Planning your week as an LP
Variables: P,E, S

max 2P+ E

subject to E > 56
S>60
2S+ E-3P >150
P+E>70
P+S+E=168
P>0
$>0
E>0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!
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Operations Research-style Example

Four different manufacturing plants for making

cars:
labor materials pollution
Plant 1 2 15
Plant 2 3 10
Plant 3 4 9
Plant 4 5 7

Jessica Sorrell
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Operations Research-style Example

Four different manufacturing plants for making

cars:

labor materials  pollution > Need to produce at least 400 cars at plant

Plant 1

Plant 2

Plant 3

Plant 4

3 (labor agreement)

2 3 15 » Have 3300 total hours of labor, 4000
units of material

3 4 10 » Environmental law: produce at most
12000 pollution

Make as many cars as possible
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OR example as an LP

Four different manufacturing plants for making Variables:

cars:
labor materials pollution
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7
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OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
L] 1 - 1

cars: ie{l,2,3,4)
labor materials pollution
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7
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OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
L] 1 - 1

o i€{l1,2,3,4}
labor materials pollution Objective:
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 | 4 5 9
Plant 4 5 6 7
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OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
L] 1 - 1

= ie€{l,2,3,4}
labor materials pollution Objective: max x1 + x2 + X3 + X4
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7
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OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
L] 1 - 1

cars: e11.2.3.4)
labor materials pollution Objective: max xj1 + xp + X3 + X3
Constraints:
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Jessica Sorrell Lecture 22: Linear Programming November 13, 2025 7/20



OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
L] 1 - 1

cars: e11.2.3.4)
labor materials pollution Objective: max xj1 + xp + X3 + X3
Constraints:
Plant 1 2 3 15
x3 > 400

Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7
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OR example as an LP

Four different manufacturing plants for making Variables: x; = 4 cars produced at plant i, for
L] 1 - 1

cars: e11.2.3.4)
labor materials pollution Objective: max xj1 + xp + X3 + X3
Constraints:
Plant 1 2 3 15
x3 > 400
Plant 2 3 4 10 2x1 +3x2 +4x3 +5x4 <3300
Plant 3 4 5 9
Plant 4 5 6 7
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OR example as an LP

Four different manufacturing plants for making Variables: x; = # cars produced at plant i, for
L 1 - !

cars: e11.2.3.4)
labor materials pollution Objective: max xj1 + xp + X3 + X3
Constraints:
Plant 1 2 3 15
x3 > 400
Plant 2 3 4 10 2x1 +3x2 +4x3 +5x4 <3300
3x1 +4xy + 5x3 + 6x4 < 4000
Plant 3 4 5 0 X1 +ax +9x3+0x3 <
Plant 4 5 6 7
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OR example as an LP

Four different manufacturing plants for making Variables: x:
- A

cars: ie{1,2,3,4}
labor materials pollution Objective: max xi + X2 + X3 + X4
Constraints:
Plant 1 2 15
x3 > 400
Plant 2 3 10 2x1 +3x0 +4x3 + 5x4 <3300
3 4 5 6x, < 4000
Plant 3 | 4 9 TR TN T
15x1 +10xy + 9x3 + 7x4 < 12000
Plant 4 5 I
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OR example as an LP

Four different manufacturing plants for making Variables: x:
- A

cars:
labor materials pollution
Plant 1 2 15
Plant 2 3 10
Plant 3 4 9
Plant 4 5 7

Jessica Sorrell

Lecture 22: Linear Programming

ie€{l,2,3,4}
Objective: max x; + X2 + X3 + Xa

Constraints:

x3 > 400
2x1 +3x> +4x3 + 5x4 <3300
3x1 +4x> + 5x3 + 6x4 <4000

15x1 +10xy + 9x3 + 7x4 < 12000

x; >0

= # cars produced at plant i, for

Vie{l,2,3,4}
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Max Flow as LP
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Max Flow as LP

Variables:
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Max Flow as LP

Variables: f(e) for all e € E
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Max Flow as LP

Variables: f(e) for all e € E

a § c Objective:
o— 3¢
L0 s
lo u @')
(0
lo ¢o/ 20
b (0 d
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Max Flow as LP

a 5 C
O-/—\ao
L0 s
lo u @')
(0
o ¢o/ 20
b L0 d

Jessica Sorrell

Variables: f(e) for all e € E

Objective: maxy , f(s,v)-Y, f(v,s)
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Max Flow as LP

a 5 C
O-/—\ao
L0 s
lo u @')
(0
o ¢o/ 20
b L0 d

Jessica Sorrell

Variables: f(e) for all e € E

Objective: maxy , f(s,v)-Y, f(v,s)

Constraints:
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Max Flow as LP

a 5 C
O-/—\ao
L0 s
lo u @
(0
o ¢o/ 20
b L0 d

Jessica Sorrell

Variables: f(e) for all e € E

Objective: maxy , f(s,v)-Y, f(v,s)

Constraints:

Y f(vyu)-) f(u,v)=0

Lecture 22: Linear Programming
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Max Flow as LP

a 5 C
o-/—\ao
L0 s
lo u @
(0
Lo g/ 20
b L0 d

Jessica Sorrell

Variables: f(e) for all e € E
Objective: maxy , f(s,v)-Y, f(v,s)

Constraints:

Y f(vyu)-) f(u,v)=0

Lecture 22: Linear Programming

f(e) <c(e)

YVue V~{s,t}

Vee E
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Max Flow as LP

Variables: f(e) for all e € E

a 5 ¢ Objective: maxy , f(s,v)-Y, f(v,s)

o—2 3o
L9 5 Constraints:

lo v @

(o/ Y f(vyu)-) f(u,v)=0 Vue V-~ {s,t}

qu 20 Y Y

O/TOA f(e) <c(e) Vee E

b f(e) >0 VecE
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Max Flow as LP

Variables: f(e) for all e € E

a 5 ¢ Objective: maxy , f(s,v)-Y, f(v,s)

o—2 3o
L9 5 Constraints:

lo v @

(o/ Y f(vyu)-) f(u,v)=0 Vue V-~ {s,t}

qu 20 Y Y

O/TOA f(e) <c(e) Vee E

b f(e) >0 VecE

So can solve max-flow and min-cut (slower) by using generic LP solver
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Multicommodity Flow

Generalization of max-flow with
multiple commodities that can't mix,
but use up same capacity
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Multicommodity Flow

Generalization of max-flow with
multiple commodities that can't mix,
but use up same capacity

Setup:
> Directed graph G = (V, E)
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Jessica Sorrell
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Multicommodity Flow

Generalization of max-flow with Variables:
multiple commodities that can't mix,
but use up same capacity

Setup:
> Directed graph G = (V, E)
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities
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Multicommodity Flow

Generalization of max-flow with

but use up same capacity

Setup:
> Directed graph G = (V, E)
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Jessica Sorrell
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Variables: f;(e) for all e € E and for all i € [k].
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Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
but use up same capacity

Objective:
Setup:

> Directed graph G = (V, E)
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities
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Multicommodity Flow

Generalization of max-flow with

but use up same capacity

Setup:
> Directed graph G = (V, E)
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Jessica Sorrell
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Variables: f;(e) for all e € E and for all i € [k].

Objective: max Y~ . (X, fi(si,v) - X, fi(v,s;))
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Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
but use up same capacity

Objective: max Y~ . (X, fi(si,v) - X, fi(v,s;))
Setup:

» Directed graph G = (V, E) Constraints:
» Capacities ¢ : E - Ry
> k source-sink pairs {(s;j, ti)}ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities
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Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
but use up same capacity

Objective: max Y~ . (X, fi(si,v) - X, fi(v,s;))

Setup:
» Directed graph G = (V, E) Constraints:
> Capacities c: E - Ryg Zf;'(V,U)—Zf,'(U,V)=O Vielk], Vue V~{s;, t;}
> k source-sink pairs {(sj, ti) }ic[k] v v

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities
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Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
but use up same capacity

Objective: max Y~ . (X, fi(si,v) - X, fi(v,s;))

Setup:
» Directed graph G = (V, E) Constraints:
> Capacities c: E - Ryg Zf;'(V,U)—Zf,'(U,V)=O Vielk], Vue V~{s;, t;}
> k source-sink pairs {(sj, ti) }ic[k] v v

k
Goal: send flow of commodity i from Z; fi(e) < c(e) VecE

s; to t;, max total flow sent across all
commodities
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Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
but use up same capacity

Objective: max Y~ . (X, fi(si,v) - X, fi(v,s;))

Setup:
» Directed graph G = (V, E) Constraints:
> Capacities c: E - Ryg Zf;'(V,U)—Zf,'(U,V)=O Vielk], Vue V~{s;, t;}
> k source-sink pairs {(sj, ti) }ic[k] v v
k
Goal: send flow of commodity i from Z; fi(e) < c(e) Veck
1=
s; to t;, max total flow sent across all f.(e) 20 VecE, Viel[k]
i = ’

commodities
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Concurrent Flow

Multicommodity flow, but:

> Also given demands
d: [k] - RZQ

> Question: |s there a
multicommodity flow
that sends at least d(#)
commodity-i flow from
s; to t; for all i € [k]?

Jessica Sorrell
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Concurrent Flow

Multicommodity flow, but:

> Also given demands
d: [k] - RZQ

> Question: |s there a
multicommodity flow
that sends at least d(#)
commodity-i flow from
s; to t; for all i € [k]?

Jessica Sorrell

Variables: f;(e) for all e € E and for all i € [k].
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Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but: ]
Constraints:

> Also given demands
d: [k] - RZQ

> Question: |s there a
multicommodity flow
that sends at least d(#)
commodity-i flow from
s; to t; for all i € [k]?
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Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but:

_ Constraints:
> Also given demands

d:[k] =Rz Y fi(v,u) =Y fi(u,v) =0 Vie[k], Yue V{s;,t;}
» Question: Is there a v v

multicommodity flow k
that sends at least d(#) ~ fi(e) < c(e) veck
commodity-i flow from f(e) >0 VecE, Vie[K]

s; to t; for all i € [k]?
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Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but: ]
_ Constraints:
> Also given demands

d:[k] - Ry Zf}(v,u)—Zf}(u,v)=0
» Question: Is there a v v

multicommodity flow

that sends at least d(i) & fi(e) < c(e)

commodity-i flow from fi(e) >0

; to t; for all i € [k]?
sitotiforall Felkl? s V) S (v s) > d()

k

Jessica Sorrell Lecture 22: Linear Programming
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Maximum Concurrent Flow

If answer is no: how much
do we need to scale down
demands so that there is a
multicommodity flow?

Jessica Sorrell
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Maximum Concurrent Flow

If answer is no: how much
do we need to scale down
demands so that there is a
multicommodity flow?

Jessica Sorrell

Variables:

> f;(e) for all e € E and for all i € [k].

> A
Objective: max A\

Constraints:

Zﬂ'(vau)_zfi(ua v)=0

> fi(e) < ce)
i=1

) f;(e)>0
. fi(sisv) - ) fi(v,s;) 2 Ad(i)

Lecture 22: Linear Programming

Vielk], Yue V~{s;, t;}

Veec E

Vee E, Viel[k]
Vi e[k]
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Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+¢€(u,v) V(u,v) e E
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Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+¢€(u,v) V(u,v) e E

Correctness Theorem: Let d* denote the optimal LP solution. Then d: =d(s,t)
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Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+¢€(u,v) V(u,v) e E

Correctness Theorem: Let d* denote the optimal LP solution. Then d: =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all ve V. Feasible = d} >d; =d(s,t).
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Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+¢€(u,v) V(u,v) e E

Correctness Theorem: Let d* denote the optimal LP solution. Then d: =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all ve V. Feasible = d} >d; =d(s,t).

<: Let P=(s=wvy,Vvi,...,Vg =1t) be shortest s - t path.
Prove by induction: dy. < d(s,v;) for all i
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Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+¢€(u,v) V(u,v) e E

Correctness Theorem: Let d* denote the optimal LP solution. Then d: =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all ve V. Feasible = d} >d; =d(s,t).

<: Let P=(s=wvy,Vvi,...,Vg =1t) be shortest s - t path.
Prove by induction: dy. < d(s,v;) for all i
Base case: i =0 v
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Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds =0
d, <d,+¢€(u,v) V(u,v) e E

Correctness Theorem: Let d* denote the optimal LP solution. Then d: =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all ve V. Feasible = d} >d; =d(s,t).

<: Let P=(s=wvy,Vvi,...,Vg =1t) be shortest s - t path.

Prove by induction: dy. < d(s,v;) for all i

Base case: i =0 v

Inductive step: dj. < dy.  +£(vi_1,v;) < d(s,vi_1) +£(vj_1,v;) = d(s, V)
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Algorithms for LPs
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Geometry

To get intuition: think of LPs geometrically
> Space: R" (one dimension per variable

> Linear constraint: halfspace (one side of a hyperplane)

> Feasible region: intersection of halfspaces. Convex Polytope (usually just called a

polytope) @_:l,
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Geometry

To get intuition: think of LPs geometrically

> Space: R" (one dimension per variable

> Linear constraint: halfspace (one side of a hyperplane)

> Feasible region: intersection of halfspaces. Convex Polytope (usually just called a

polytope)

Example: planning your week
» 3 variables S, P, E so R3
>»But S+P+E =168 —

$=168-P-E
» Make this substitution, get
RZ

Jessica Sorrell

§ 2000 € = 10%

—~
~
o0
o]
(9}
f—
O

\
- &
\ &

25-1p € > 150

s '5)
Z = e
__ é%%%@ F2(165~1-€) ~if1 €2 [0
YR O
ddlh 2 It
- - s p =
k=7 = ' %%

= =B @885
ZZ—————7% =5 7
e\ N - ////
= _
T2 2

56 170 108 186

£2 56 B
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Geometry (cont’d)

R DS 25-1py € 2 IS0
— =2 = =
%/////% 2(l&§-~F-€) ~f3£2 [50
fr€2 70 _Ex Z ‘ =
— 580©© ks
37.2// _

%% DN~ /;;
= )
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Objective: feasible solution “furthest” along specified direction
> max P: (56,26)
> max2P + E: (88.5,19.5)
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Geometry (cont'd)
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Objective: feasible solution “furthest” along specified direction
> max P: (56,26)
> max2P + E: (88.5,19.5)

Main theorem: optimal solution is always at a “corner” (also called a “vertex")
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Simplex Algorithm [Dantzig 1940's]

Initialize X to an arbitrary corner

while(a neighboring corner X’ of X has better objective value) {
> >/
X« X

return X

7

7z

Optimal
solution

Starting

vertex _4
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Simplex Analysis

Theorem: Simplex returns the optimal solution.
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Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

— Once simplex terminates, at global opt
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Proof Sketch:
» Objective linear == optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

— Once simplex terminates, at global opt

Problem: Exponential number of corners!

Jessica Sorrell Lecture 22: Linear Programming November 13, 2025 17 /20



Simplex Analysis

Theorem: Simplex returns the optimal solution.
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Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

— Once simplex terminates, at global opt

Problem: Exponential number of corners!

> Slow in theory

» Fast in practice!

» Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs
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Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

— Once simplex terminates, at global opt

Problem: Exponential number of corners!

> Slow in theory

» Fast in practice!

» Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

> Some theory to explain discrepancy (“smoothed analysis”)
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Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question == can also solve optimization
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Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question == can also solve optimizction

» Start with ellipsoid E containing feasible
region P (if it exists)
> Let x be center of E
> While(x not feasible)
» Find a hyperplane H through x such

that all of P on one side —
> Let E’ be the half-ellipsoid of E defined
by H

> Find a new ellipsoid E containing E’ so
that vol(E) < (1- %) vol (E)
> Let E = E and let x be center of E
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Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most
(1-1/n) of the volume of the original

: : t
> After t iterations, volume drops by (1 - l) factor
— n
» Absurdly useful inequality: 1+ x < e*
- (1-1) < (etiny = et
» Crucial fact: if volume “too small”, P must be empty. Let v a volume below which we
can conclude P is empty.

> Then suffices to find t such that (e”¥")Vol(E) < v, so taking t > nlog(Vol(E)/v)
suffices

—= Polynomial time!

Jessica Sorrell Lecture 22: Linear Programming November 13, 2025 19/20



Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most
(1-1/n) of the volume of the original

> After t iterations, volume drops by (1 - %)t factor

> Absurdly useful inequality: 1+ x < e*

> (1 _ %)t < (e—l/n)t - e t/n

» Crucial fact: if volume “too small”, P must be empty. Let v a volume below which we
can conclude P is empty.

> Then suffices to find t such that (e”¥")Vol(E) < v, so taking t > nlog(Vol(E)/v)
suffices

—= Polynomial time!

In practice: horrible.
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Interior Point Methods (Karmarkar's Algorithm)

Fast in both theory and practice!

A

Simplex Algorithm

Karmarkar’s Algorithm
Optimal solution point

Feasible Region

Jessica Sorrell Lecture 22: Linear Programming November 13, 2025 20/20



