Lecture 22: Linear Programming

Michael Dinitz

November 13, 2025 601.433/633 Introduction to Algorithms

Introduction

Today: What, why, and juste a taste of how

- ▶ Entire course on linear programming over in AMS. Super important topic!
- ▶ Fast algorithms in theory and in practice.

Introduction

Today: What, why, and juste a taste of how

- ▶ Entire course on linear programming over in AMS. Super important topic!
- ▶ Fast algorithms in theory and in practice.

Why: Even more general than max-flow, can still be solved in polynomial time!

- ▶ Max flow important in its own right, but also because it can be used to solve many other things (max bipartite matching)
- Linear programming: important in its own right, but also even more general than max-flow.
- Can model many, many problems!

168 hours in a week. How much time to spend:

- ► Studying (*S*)
- ▶ Partying (**P**)
- ► Everything else (*E*)

168 hours in a week. How much time to spend: Constraints:

- ▶ Studying (*S*)
- ▶ Partying (**P**)
- Everything else (*E*)

- ► F > 56 (at least 8
- ► *E* ≥ **56** (at least 8 hours/day sleep, shower, etc.)
- ▶ $P + E \ge 70$ (need to stay sane)
- ▶ $S \ge 60$ (to pass your classes)
- ▶ $2S + E 3P \ge 150$ (too much partying requires studying or sleep)

168 hours in a week. How much time to spend: Constraints:

- ▶ Studying (*S*)
- ▶ Partying (**P**)
- Everything else (*E*)

- ► *E* ≥ **56** (at least 8 hours/day sleep, shower, etc.)
- ▶ $P + E \ge 70$ (need to stay sane)
- ▶ $S \ge 60$ (to pass your classes)
- ▶ $2S + E 3P \ge 150$ (too much partying requires studying or sleep)

Question: Is this possible? Is there a *feasible* solution?

168 hours in a week. How much time to spend: Constraints:

- Studying (S)
- Partying (P)
- Everything else (E)

- ▶ $E \ge 56$ (at least 8 hours/day sleep, shower, etc.)
- ▶ $P + E \ge 70$ (need to stay sane)
- ▶ $S \ge 60$ (to pass your classes)
- ▶ $2S + E 3P \ge 150$ (too much partying requires studying or sleep)

Question: Is this possible? Is there a *feasible* solution?

• Yes! S = 80. P = 20. E = 68

Lecture 22: Linear Programming

168 hours in a week. How much time to spend: Constraints:

- Studying (S)
- Partying (P)
- Everything else (E)

- ▶ $E \ge 56$ (at least 8 hours/day sleep, shower, etc.)
- ▶ $P + E \ge 70$ (need to stay sane)
- ▶ $S \ge 60$ (to pass your classes)
- ▶ $2S + E 3P \ge 150$ (too much partying requires studying or sleep)

Question: Is this possible? Is there a *feasible* solution?

• Yes! S = 80. P = 20. E = 68

Question: Suppose "happiness" is 2P + 3E. Can we find a feasible solution maximizing this?

Michael Dinitz

Linear Programming

Input (a "linear program"):

- ▶ n variables x_1, \ldots, x_n (take values in \mathbb{R})
- ▶ m non-strict linear inequalities in these variables (constraints)
 - ► E.g.: $3x_1 + 4x_2 \le 6$, $0 \le x_1 \le 3$ $x_2 3x_3 + 2x_7 = 17$
 - Not allowed (examples): $x_2x_3 \ge 5$, $x_4 < 2$, $x_5 + \log x_2 \ge 4$
- Possibly a *linear* objective function
 - $ightharpoonup \max 2x_3 4x_5, \qquad \min \frac{5}{2}x_4 + x_2, \qquad \dots$

Goals:

- Feasibility: Find values for x's that satisfy all constraints
- ▶ Optimization: Find feasible solutions maximizing/minimizing objective function

Both achievable in polynomial time, reasonably fast!

Variables: **P**, **E**, **S**

Variables: P, E, S

 $\max 2P + E$

Variables: **P**, **E**, **S**

$$\begin{array}{ll} \text{max} & 2P + E \\ \text{subject to} & E \geq 56 \\ & S \geq 60 \\ & 2S + E - 3P \geq 150 \\ & P + E \geq 70 \end{array}$$

Variables: **P**, **E**, **S**

max
$$2P + E$$

subject to $E \ge 56$
 $S \ge 60$
 $2S + E - 3P \ge 150$
 $P + E \ge 70$
 $P + S + E = 168$
 $P \ge 0$
 $S \ge 0$
 $E \ge 0$

Variables: P, E, S

max
$$2P + E$$

subject to $E \ge 56$
 $S \ge 60$
 $2S + E - 3P \ge 150$
 $P + E \ge 70$
 $P + S + E = 168$
 $P \ge 0$
 $S \ge 0$
 $E \ge 0$

When using an LP to model your problem, need to be sure that *all* aspects of your problem included!

Operations Research-style Example

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Operations Research-style Example

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

- Need to produce at least 400 cars at plant 3 (labor agreement)
- Have 3300 total hours of labor, 4000 units of material
- Environmental law: produce at most 12000 pollution
- Make as many cars as possible

Four different manufacturing plants for making **Variables:** cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Four different manufacturing plants for making Variables: $x_i = \#$ cars produced at plant i, for cars: $i \in \{1, 2, 3, 4\}$

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Four different manufacturing plants for making Variables: $x_i = \#$ cars produced at plant i, for cars: $i \in \{1, 2, 3, 4\}$

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Objective:

Four different manufacturing plants for making ${\bf V}$

cars:

i ∈ {

Variables: $x_i = \#$ cars produced at plant i, for $i \in \{1, 2, 3, 4\}$

 Plant 1
 2
 3
 15

 Plant 2
 3
 4
 10

 Plant 3
 4
 5
 9

 Plant 4
 5
 6
 7

Objective: $\max x_1 + x_2 + x_3 + x_4$

 $Four \ different \ manufacturing \ plants \ for \ making$

cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $x_i = \#$ cars produced at plant i, for $i \in \{1, 2, 3, 4\}$

Objective: max $x_1 + x_2 + x_3 + x_4$

Four different manufacturing plants for making

cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $x_i = \#$ cars produced at plant i, for $i \in \{1, 2, 3, 4\}$

Objective: max $x_1 + x_2 + x_3 + x_4$

Constraints:

 $x_3 \ge 400$

Four different manufacturing plants for making $% \left(1\right) =\left(1\right) \left(1\right)$

cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $x_i = \#$ cars produced at plant i, for $i \in \{1, 2, 3, 4\}$

Objective: max $x_1 + x_2 + x_3 + x_4$

$$x_3 \ge 400$$
$$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 3300$$

Four different manufacturing plants for making

cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $x_i = \#$ cars produced at plant i, for $i \in \{1, 2, 3, 4\}$

Objective: max $x_1 + x_2 + x_3 + x_4$

$$x_3 \ge 400$$

$$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 3300$$

$$3x_1 + 4x_2 + 5x_3 + 6x_4 \le 4000$$

Four different manufacturing plants for making $% \left(1\right) =\left(1\right) \left(1\right)$

cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $x_i = \#$ cars produced at plant i, for $i \in \{1, 2, 3, 4\}$

Objective: $\max x_1 + x_2 + x_3 + x_4$

$$x_3 \ge 400$$

$$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 3300$$

$$3x_1 + 4x_2 + 5x_3 + 6x_4 \le 4000$$

$$15x_1 + 10x_2 + 9x_3 + 7x_4 \le 12000$$

Four different manufacturing plants for making

cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $x_i = \#$ cars produced at plant i, for $i \in \{1, 2, 3, 4\}$

Objective: max $x_1 + x_2 + x_3 + x_4$

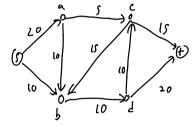
$$x_3 \ge 400$$

$$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 3300$$

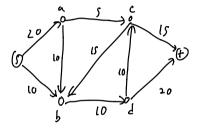
$$3x_1 + 4x_2 + 5x_3 + 6x_4 \le 4000$$

$$15x_1 + 10x_2 + 9x_3 + 7x_4 \le 12000$$

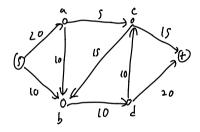
$$x_i \ge 0 \qquad \forall i \in \{1, 2, 3, 4\}$$

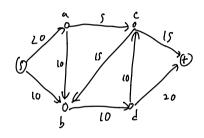


Variables:



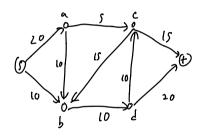
Variables: f(e) for all $e \in E$





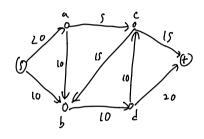
Variables: f(e) for all $e \in E$

Objective:



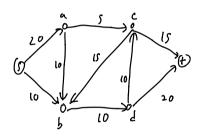
Variables: f(e) for all $e \in E$

Objective: $\max \sum_{v} f(s, v) - \sum_{v} f(v, s)$



Variables: f(e) for all $e \in E$

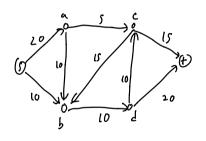
Objective: $\max \sum_{v} f(s, v) - \sum_{v} f(v, s)$



Variables: f(e) for all $e \in E$

Objective: $\max \sum_{v} f(s, v) - \sum_{v} f(v, s)$

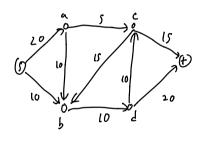
$$\sum_{v} f(v, u) - \sum_{v} f(u, v) = 0 \qquad \forall u \in V \setminus \{s, t\}$$



Variables: f(e) for all $e \in E$

Objective: $\max \sum_{v} f(s, v) - \sum_{v} f(v, s)$

$$\sum_{v} f(v, u) - \sum_{v} f(u, v) = 0 \qquad \forall u \in V \setminus \{s, t\}$$
$$f(e) \le c(e) \qquad \forall e \in E$$



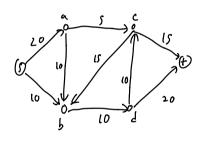
Variables: f(e) for all $e \in E$

Objective: $\max \sum_{v} f(s, v) - \sum_{v} f(v, s)$

$$\sum_{v} f(v, u) - \sum_{v} f(u, v) = 0 \qquad \forall u \in V \setminus \{s, t\}$$

$$f(e) \le c(e) \qquad \forall e \in E$$

$$f(e) \ge 0 \qquad \forall e \in E$$



Variables: f(e) for all $e \in E$

Objective: $\max \sum_{v} f(s, v) - \sum_{v} f(v, s)$

Constraints:

$$\sum_{v} f(v, u) - \sum_{v} f(u, v) = 0 \qquad \forall u \in V \setminus \{s, t\}$$

$$f(e) \le c(e) \qquad \forall e \in E$$

$$f(e) \ge 0 \qquad \forall e \in E$$

So can solve max-flow and min-cut (slower) by using generic LP solver

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Setup:

- ▶ Directed graph G = (V, E)
- ▶ Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity Variables:

Setup:

- ▶ Directed graph G = (V, E)
- ▶ Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Generalization of max-flow with with multiple commodities that can't mix, Flow of commodity i on edge e but use up same capacity Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

Setup:

- ▶ Directed graph G = (V, E)
- ▶ Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Generalization of max-flow with Wariables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$. multiple commodities that can't mix, Flow of commodity i on edge e but use up same capacity

Objective:

Setup:

- ▶ Directed graph G = (V, E)
- ▶ Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$. Flow of commodity i on edge e

Objective: $\max \sum_{i=1}^{k} (\sum_{v} f_i(s_i, v) - \sum_{v} f_i(v, s_i))$

Setup:

- ▶ Directed graph G = (V, E)
- ▶ Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$. Flow of commodity i on edge e

Objective: $\max \sum_{i=1}^{k} (\sum_{v} f_i(s_i, v) - \sum_{v} f_i(v, s_i))$

Setup:

- ▶ Directed graph G = (V, E)
- ▶ Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Goal: send flow of commodity i from s_i to t_i , max total flow sent across all commodities

Generalization of max-flow with multiple commodities that can't mix,

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

Flow of commodity i on edge e

Objective: $\max \sum_{i=1}^{k} (\sum_{v} f_i(s_i, v) - \sum_{v} f_i(v, s_i))$

Setup:

Directed graph G = (V, E)

▶ Capacities $c: E \to \mathbb{R}_{>0}$

but use up same capacity

• k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Constraints:

 $\sum_{v} f_i(v,u) - \sum_{v} f_i(u,v) = 0$ $\forall i \in [k], \forall u \in V \setminus \{s_i, t_i\}$

Generalization of max-flow with multiple commodities that can't mix,

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

Flow of commodity i on edge e

Objective: $\max \sum_{i=1}^{k} (\sum_{v} f_i(s_i, v) - \sum_{v} f_i(v, s_i))$

Setup:

- Directed graph G = (V, E)
- ▶ Capacities $c: E \to \mathbb{R}_{>0}$

but use up same capacity

k source-sink pairs $\{(s_i,t_i)\}_{i\in[k]}$ $\sum_{v} f_i(v,u) - \sum_{v} f_i(u,v) = 0$

Goal: send flow of commodity *i* from s_i to t_i , max total flow sent across all commodities

Constraints:

$$\sum_{v} f_i(v, u) - \sum_{v} f_i(u, v) = 0$$

$$\forall i \in [k], \forall u \in V \setminus \{s_i, t_i\}$$

$$\sum_{i=1}^k f_i(e) \le c(e)$$

 $\forall e \in E$

Generalization of max-flow with multiple commodities that can't mix,

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$. Flow of commodity i on edge e

Objective: $\max \sum_{i=1}^{k} (\sum_{v} f_i(s_i, v) - \sum_{v} f_i(v, s_i))$

Setup:

- Directed graph G = (V, E)
- ▶ Capacities $c: E \to \mathbb{R}_{>0}$

but use up same capacity

• k source-sink pairs $\{(s_i,t_i)\}_{i\in[k]}$

Goal: send flow of commodity i from s_i to t_i , max total flow sent across all commodities

Constraints:

$$\sum_{v} f_i(v,u) - \sum_{v} f_i(u,v) = 0$$

$$\sum_{i=1}^{K} f_i(e) \le c(e)$$

$$f_i(e) \geq 0$$

9/20

$$\forall e \in E, \forall i \in [k]$$

 $\forall i \in [k], \forall u \in V \setminus \{s_i, t_i\}$

Multicommodity flow, but:

- Also given demands $d: [k] \to \mathbb{R}_{>0}$
- Question: Is there a multicommodity flow that sends at least d(i) commodity-i flow from s_i to t_i for all i ∈ [k]?

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

Multicommodity flow, but:

- Also given demands $d: [k] \to \mathbb{R}_{\geq 0}$
- Question: Is there a multicommodity flow that sends at least d(i) commodity-i flow from s_i to t_i for all i ∈ [k]?

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

Multicommodity flow, but:

- ► Also given demands $d: [k] \to \mathbb{R}_{\geq 0}$
- Question: Is there a multicommodity flow that sends at least d(i) commodity-i flow from s_i to t_i for all i ∈ [k]?

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

Multicommodity flow, but:

- Also given demands $d: [k] \to \mathbb{R}_{\geq 0}$
- Question: Is there a multicommodity flow that sends at least d(i) commodity-i flow from s_i to t_i for all i ∈ [k]?

$$\sum_{v} f_{i}(v, u) - \sum_{v} f_{i}(u, v) = 0 \qquad \forall i \in [k], \ \forall u \in V \setminus \{s_{i}, t_{i}\}$$

$$\sum_{i=1}^{k} f_{i}(e) \leq c(e) \qquad \forall e \in E$$

$$f_{i}(e) \geq 0 \qquad \forall e \in E, \ \forall i \in [k]$$

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

Multicommodity flow, but:

- ► Also given demands $d: [k] \to \mathbb{R}_{>0}$
- Question: Is there a multicommodity flow that sends at least d(i) commodity-i flow from s_i to t_i for all i ∈ [k]?

$$\sum_{v} f_{i}(v, u) - \sum_{v} f_{i}(u, v) = 0 \qquad \forall i \in [k], \ \forall u \in V \setminus \{s_{i}, t_{i}\}$$

$$\sum_{i=1}^{k} f_{i}(e) \leq c(e) \qquad \forall e \in E$$

$$f_{i}(e) \geq 0 \qquad \forall e \in E, \ \forall i \in [k]$$

$$\sum_{i=1}^{k} f_{i}(v, s_{i}) \geq d(i) \qquad \forall i \in [k]$$

Maximum Concurrent Flow

If answer is no: how much do we need to scale down demands so that there is a multicommodity flow?

Maximum Concurrent Flow

Variables:

- $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.
- λ

Objective: $\max \lambda$

If answer is no: how much do we need to scale down demands so that there is a multicommodity flow?

$$\sum_{v} f_{i}(v, u) - \sum_{v} f_{i}(u, v) = 0 \qquad \forall i \in [k], \ \forall u \in V \setminus \{s_{i}, t_{i}\}$$

$$\sum_{i=1}^{k} f_{i}(e) \leq c(e) \qquad \forall e \in E$$

$$f_{i}(e) \geq 0 \qquad \forall e \in E, \ \forall i \in [k]$$

$$\sum_{v} f_{i}(s_{i}, v) - \sum_{v} f_{i}(v, s_{i}) \geq \lambda d(i) \qquad \forall i \in [k]$$

Shortest *s* – *t* path

Very surprising LP!

Variables: d_{ν} for all $\nu \in V$: shortest-path distance from s to ν

max
$$d_t$$
 subject to $d_s = 0$
$$d_v \leq d_u + \ell(u,v) \qquad \qquad \forall (u,v) \in {\it E}$$

Shortest *s* – *t* path

Very surprising LP!

Variables: d_{ν} for all $\nu \in V$: shortest-path distance from s to ν

max
$$d_t$$
 subject to $d_s = 0$
$$d_v \leq d_u + \ell(u,v) \qquad \qquad \forall (u,v) \in E$$

Correctness Theorem: Let \vec{d}^* denote the optimal LP solution. Then $d_t^* = d(s,t)$

Shortest s - t path

Very surprising LP!

Variables: d_{ν} for all $\nu \in V$: shortest-path distance from s to ν

max
$$d_t$$
 subject to $d_s = 0$
$$d_v \leq d_u + \ell(u,v) \qquad \qquad \forall (u,v) \in E$$

Correctness Theorem: Let \vec{d}^* denote the optimal LP solution. Then $d_t^* = d(s,t)$ **Proof Sketch:** \geq : Let $d_v = d(s,v)$ for all $v \in V$. Feasible $\implies d_t^* \geq d_t = d(s,t)$.

Shortest *s* – *t* path

Very surprising LP!

Variables: d_{ν} for all $\nu \in V$: shortest-path distance from s to ν

max
$$d_t$$
 subject to $d_s = 0$
$$d_v \leq d_u + \ell(u,v) \qquad \qquad \forall (u,v) \in E$$

Correctness Theorem: Let \vec{d}^* denote the optimal LP solution. Then $d_t^* = d(s,t)$ Proof Sketch: \geq : Let $d_v = d(s,v)$ for all $v \in V$. Feasible $\implies d_t^* \geq d_t = d(s,t)$.

 \leq : Let $P = (s = v_0, v_1, \dots, v_k = t)$ be shortest $s \to t$ path.

Prove by induction: $d_{v_i}^* \leq d(s, v_i)$ for all i

Shortest s - t path

Very surprising LP!

Variables: d_{v} for all $v \in V$: shortest-path distance from s to v

max
$$d_t$$
 subject to $d_s = 0$
$$d_v \leq d_u + \ell(u,v) \qquad \qquad \forall (u,v) \in E$$

Correctness Theorem: Let \vec{d}^* denote the optimal LP solution. Then $d_t^* = d(s,t)$ **Proof Sketch:** \geq : Let $d_v = d(s, v)$ for all $v \in V$. Feasible $\implies d_v^* \geq d_t = d(s, t)$.

 \leq : Let $P = (s = v_0, v_1, \dots, v_k = t)$ be shortest $s \to t$ path.

Prove by induction: $d_{v_i}^* \le d(s, v_i)$ for all i

Base case: i = 0 \checkmark

Shortest *s* – *t* path

Very surprising LP!

Variables: d_{ν} for all $\nu \in V$: shortest-path distance from s to ν

max
$$d_t$$
 subject to $d_s = 0$
$$d_v \leq d_u + \ell(u,v) \qquad \qquad \forall (u,v) \in E$$

Correctness Theorem: Let \vec{d}^* denote the optimal LP solution. Then $d_t^* = d(s,t)$ Proof Sketch: \geq : Let $d_v = d(s,v)$ for all $v \in V$. Feasible $\implies d_t^* \geq d_t = d(s,t)$.

 \leq : Let $P = (s = v_0, v_1, \dots, v_k = t)$ be shortest $s \rightarrow t$ path.

Prove by induction: $d_{v_i}^* \le d(s, v_i)$ for all i

Base case: i = 0 \checkmark

Inductive step: $d_{v_i}^* \le d_{v_{i-1}}^* + \ell(v_{i-1}, v_i) \le d(s, v_{i-1}) + \ell(v_{i-1}, v_i) = d(s, v_i)$

Algorithms for LPs

Geometry

To get intuition: think of LPs geometrically

- ▶ Space: \mathbb{R}^n (one dimension per variable
- Linear constraint: halfspace (one side of a hyperplane)
- Feasible region: intersection of halfspaces. Convex Polytope (usually just called a polytope)

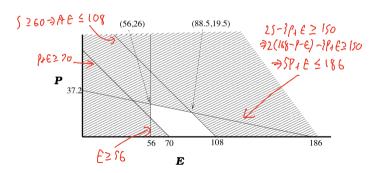
Geometry

To get intuition: think of LPs geometrically

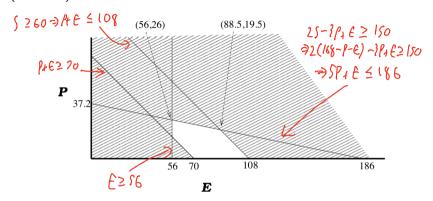
- ▶ Space: \mathbb{R}^n (one dimension per variable
- ▶ Linear constraint: halfspace (one side of a hyperplane)
- ► Feasible region: intersection of halfspaces. *Convex Polytope* (usually just called a *polytope*)

Example: planning your week

- ▶ 3 variables S, P, E so \mathbb{R}^3
- ► But $S + P + E = 168 \Longrightarrow$ S = 168 - P - E
- $\stackrel{\blacktriangleright}{\mathbb{R}} \text{ Make this substitution, get} \\ \mathbb{R}^2$



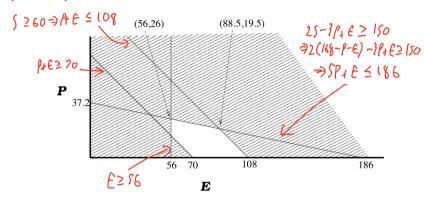
Geometry (cont'd)



Objective: feasible solution "furthest" along specified direction

- \rightarrow max P: (56, 26)
- Arr max 2P + E: (88.5, 19.5)

Geometry (cont'd)



Objective: feasible solution "furthest" along specified direction

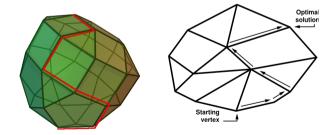
- \rightarrow max P: (56, 26)
- \rightarrow max 2P + E: (88.5, 19.5)

Main theorem: optimal solution is always at a "corner" (also called a "vertex")

Michael Dinitz Lecture 22: Linear Programming

Simplex Algorithm [Dantzig 1940's]

```
Initialize \vec{x} to an arbitrary corner while(a neighboring corner \vec{x}' of \vec{x} has better objective value) { \vec{x} \leftarrow \vec{x}' } return \vec{x}
```



Theorem: Simplex returns the optimal solution.

17 / 20

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- ▶ Objective linear ⇒ optimal solution at a corner
- ► Feasible set convex + linear objective ⇒ any local opt is global opt

→ Once simplex terminates, at global opt

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- ▶ Objective linear ⇒ optimal solution at a corner
- ▶ Feasible set convex + linear objective ⇒ any local opt is global opt
- → Once simplex terminates, at global opt

Problem: Exponential number of corners!

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- ▶ Objective linear ⇒ optimal solution at a corner
- ▶ Feasible set convex + linear objective ⇒ any local opt is global opt
- → Once simplex terminates, at global opt

Problem: Exponential number of corners!

Slow in theory

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- ▶ Objective linear ⇒ optimal solution at a corner
- ▶ Feasible set convex + linear objective ⇒ any local opt is global opt
- → Once simplex terminates, at global opt

Problem: Exponential number of corners!

- Slow in theory
- Fast in practice!
 - Much of AMS LP course really about simplex: traditionally favorite algorithm of people who want to actually solve LPs

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- ▶ Objective linear ⇒ optimal solution at a corner
- ► Feasible set convex + linear objective ⇒ any local opt is global opt
- → Once simplex terminates, at global opt

Problem: Exponential number of corners!

- Slow in theory
- Fast in practice!
 - Much of AMS LP course really about simplex: traditionally favorite algorithm of people who want to actually solve LPs
- Some theory to explain discrepancy ("smoothed analysis")

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!

Designed to just solve feasibility question \implies can also solve optimization

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!

Designed to just solve feasibility question \implies can also solve optimization

- Start with ellipsoid *E* containing feasible region *P* (if it exists)
- Let x be center of E
- While(x not feasible)
 - ► Find a hyperplane **H** through **x** such that all of **P** on one side
 - Let E' be the half-ellipsoid of E defined by H
 - Find a new ellipsoid \hat{E} containing E' so that $vol(\hat{E}) \le (1 \frac{1}{n}) vol(E)$
 - Let $\mathbf{E} = \hat{\mathbf{E}}$ and let \mathbf{x} be center of $\hat{\mathbf{E}}$

Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most (1-1/n) of the volume of the original

- ▶ Using inequality from last time: after *n* iterations, volume drops by $\left(1-\frac{1}{n}\right)^n \leq 1/e$ factor
- ► Crucial fact: if volume "too small", **P** must be empty

→ Polynomial time!

Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most (1-1/n) of the volume of the original

- ▶ Using inequality from last time: after *n* iterations, volume drops by $\left(1-\frac{1}{n}\right)^n \leq 1/e$ factor
- ► Crucial fact: if volume "too small", **P** must be empty

→ Polynomial time!

In practice: horrible.

Interior Point Methods (Karmarkar's Algorithm)

Fast in both theory and practice!

