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Introduction

Last few weeks: slower and slower algorithms for harder and harder problems
> From O(m + n) time algorithms for BFS/DFS /topological sort/SCCs, to O(m?n) for
max flow

» Today: start of two lectures on NP-completeness.
> The (or at least a) line between tractability and intractability
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Last few weeks: slower and slower algorithms for harder and harder problems
> From O(m + n) time algorithms for BFS/DFS /topological sort/SCCs, to O(m?n) for

max flow
» Today: start of two lectures on NP-completeness.
> The (or at least a) line between tractability and intractability

Definition
An algorithm runs in polynomial time if its (worst-case) running time is O(n°) for some
constant ¢ > 0, where n is the size of the input.

Think of polynomial time as “fast”, super-polynomial time as “slow”
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Introduction

Last few weeks: slower and slower algorithms for harder and harder problems

» From O(m + n) time algorithms for BFS/DFS /topological sort/SCCs, to O(m?n) for

max flow
» Today: start of two lectures on NP-completeness.
> The (or at least a) line between tractability and intractability

Definition
An algorithm runs in polynomial time if its (worst-case) running time is O(n°) for some
constant ¢ > 0, where n is the size of the input.

Think of polynomial time as “fast”, super-polynomial time as “slow”

Question: When do polynomial-time algorithms exist?
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Decision Problems

Definition J

A decision problem is a computational problem in which the output is either YES or NO.
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Decision Problems

A decision problem is a computational problem in which the output is either YES or NO.

Definition J

Examples:

» Max-Flow: Inputis G =(V,E),c: E - Ryp,s,t € V,keR". Output YES if there is an
(s, t)-flow of value at least k, otherwise output NO.

» Shortest s - t path: Inputis G=(V,E),£: E - R,s,te V,keR. Output YES if
d(s,t) < k, otherwise output NO.
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Decision Problems

Definition J

A decision problem is a computational problem in which the output is either YES or NO.

Examples:

» Max-Flow: Inputis G =(V,E),c: E - Ryp,s,t € V,keR". Output YES if there is an
(s, t)-flow of value at least k, otherwise output NO.

» Shortest s - t path: Inputis G=(V,E),£: E - R,s,te V,keR. Output YES if
d(s,t) < k, otherwise output NO.

Some problems naturally decision, others naturally optimization, but can turn any optimization
problem into a decision problem.

> If can solve decision, can almost always solve optimization.

Jessica Sorrell Lecture 23: NP-Completeness | November 18, 2025 3/14



Decision Problems

Definition J

A decision problem is a computational problem in which the output is either YES or NO.

Examples:

» Max-Flow: Inputis G =(V,E),c: E - Ryp,s,t € V,keR". Output YES if there is an
(s, t)-flow of value at least k, otherwise output NO.

» Shortest s - t path: Inputis G=(V,E),£: E - R,s,te V,keR. Output YES if
d(s,t) < k, otherwise output NO.

Some problems naturally decision, others naturally optimization, but can turn any optimization
problem into a decision problem.

> If can solve decision, can almost always solve optimization.

Note: Can divide instances (inputs) of any decision problem into YES-instances and
NO-instances
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Definition J

P is the set of decision problems that can be solved in polynomial time.

Note: problems are in P, not algorithms
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P is the set of decision problems that can be solved in polynomial time.

Definition J

Note: problems are in P, not algorithms

Question: Are all decision problems in P?
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Definition J

P is the set of decision problems that can be solved in polynomial time.

Note: problems are in P, not algorithms

Question: Are all decision problems in P?
Answer: No!
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Definition J

P is the set of decision problems that can be solved in polynomial time.

Note: problems are in P, not algorithms

Question: Are all decision problems in P?
Answer: No!

» By time hierarchy theorem there are problems that require super-polynomial time!

» Undecidability: there are problems which cannot be solved by any algorithm at all!
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Verification

Different Setting: If in addition to the input we're given a purported solution, can we check
that this solution is valid/feasible (in polynomial time)?

> Max-Flow: given f: E - R, check that value > k, flow conservation at all nodes other
than s, t, and capacity constraints obeyed
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Verification

Different Setting: If in addition to the input we're given a purported solution, can we check
that this solution is valid/feasible (in polynomial time)?
> Max-Flow: given f: E - R, check that value > k, flow conservation at all nodes other
than s, t, and capacity constraints obeyed

Definition (3-Coloring)

Input: Undirected graph G = (V, E)
Output: YES if 3 coloring f : V - {R, G, B} such that f(u) + f(v) for all {u,v} e E. NO

otherwise
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Verification

Different Setting: If in addition to the input we're given a purported solution, can we check
that this solution is valid/feasible (in polynomial time)?

> Max-Flow: given f: E - R, check that value > k, flow conservation at all nodes other
than s, t, and capacity constraints obeyed

Definition (3-Coloring)

Input: Undirected graph G = (V, E)
Output: YES if 3 coloring f : V - {R, G, B} such that f(u) + f(v) for all {u,v} e E. NO
otherwise

Verification: Given f,
» Check that f(u) e {R,G,B} for all ue V, and

> Check each edge {u, v} to make sure that f(u) + f(v)
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NP

NP: decision problems where solutions can be verified in polynomial time.

Definition
A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V (I, X) (called the verifier) such that
1. If I is a YES-instance of @, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V (I, X) = YES.
2. If I'is a NO-instance of Q, then V(/,X) = NO for all X. )
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NP

NP: decision problems where solutions can be verified in polynomial time.

Definition
A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V (I, X) (called the verifier) such that
1. If I is a YES-instance of @, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V (I, X) = YES.
2. If I'is a NO-instance of Q, then V(/,X) = NO for all X. )

Examples:
> 3-coloring: Witness X is a coloring f : V - {R, B, G}, verifier checks each edge {u, v}
to make sure f(u) # f(v)

» If I is a YES instance, then there is a coloring so verifier will return YES
> If I is a NO instance, then no valid coloring exists. Whatever X is, verifier returns NO.

Jessica Sorrell Lecture 23: NP-Completeness | November 18, 2025 6/14



NP

NP: decision problems where solutions can be verified in polynomial time.

Definition
A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V (I, X) (called the verifier) such that
1. If I is a YES-instance of @, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V (I, X) = YES.
2. If I'is a NO-instance of Q, then V(/,X) = NO for all X. )

Examples:
> Max-Flow: Witness X is a flow f : E — R, verifier checks that it's feasible of value > k

> If I is a YES instance, then there is a feasible flow of value at least k so verifier (on this

flow) will return YES
» |f I a NO instance, then no feasible flow of value > k. Whatever X is, verifier returns NO.
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NP

NP: decision problems where solutions can be verified in polynomial time.

Definition
A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V/ (I, X) (called the verifier) such that
1. If I is a YES-instance of Q, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V (I, X) = YES.

2. If I'is a NO-instance of Q, then V(/,X) = NO for all X.
Examples:
> Factoring: Instance is pair of integers M, k. YES if M has as factor in {2,...,k}, NO
otherwise.

> Witness: integer f in {2,3,...,k}. Verifier: returns YES if M/f is an integer and

fe{2,...,k}, NO otherwise.
» |f YES instance, then an f does exist so verifier returns YES on that f. If NO, then no such

f exists so verifier always returns NO.
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NP

NP: decision problems where solutions can be verified in polynomial time.

Definition
A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V (I, X) (called the verifier) such that
1. If I is a YES-instance of @, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V (I, X) = YES.
2. If I'is a NO-instance of Q, then V(/,X) = NO for all X. )

Examples:
» Traveling Salesman: Instance is weighted graph G and integer k. YES iff G has a tour
(walk that touches very vertex at least once) of length < k.
> Witness: tour P. Verifier checks that it is a tour, has length at most k
> If YES instance, then such a tour exists == verifier returns YES on that tour.
> If NO, no such tour exists == verifier always returns NO.
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NP

NP: decision problems where solutions can be verified in polynomial time.

Definition
A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V (I, X) (called the verifier) such that
1. If I is a YES-instance of @, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V (I, X) = YES.
2. If I'is a NO-instance of Q, then V(/,X) = NO for all X. )

Important asymmetry: need a witness for YES, not a witness for NO.
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P vs NP

Pc NP l




P vs NP

Theorem
Pc NP J

Proof.
Let Q € P.
V (I, X): Ignore X, solve on instance .
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Theorem
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Proof.
Let Q € P.
V (I, X): Ignore X, solve on instance .

Question: Does P = NP, i.e., is NP c P?
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P vs NP

Theorem
Pc NP J

Proof.
Let Q € P.
V (I, X): Ignore X, solve on instance .

Question: Does P = NP, i.e., is NP c P?

> Almost everyone thinks no, but we don’'t know for sure!
> Not even particularly close to a proof.
» Think about what P = NP would mean. ..
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Reductions

Question: How could we prove that P = NP or P + NP?

Jessica Sorrell Lecture 23: NP-Completeness | November 18, 2025 8/14



Reductions

Question: How could we prove that P = NP or P + NP?

» P = NP: Need to show that every problem in NP is also in P!

» P + NP: Need to prove that some problem in NP not in P.
» What is the “hardest” problem in NP?
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Reductions

Question: How could we prove that P = NP or P + NP?

» P = NP: Need to show that every problem in NP is also in P!

» P + NP: Need to prove that some problem in NP not in P.
» What is the “hardest” problem in NP?

Definition
Problem A is polytime reducible to problem B (written A <, B) if, given a polynomial-time
algorithm for B, we can use it to produce a polynomial-time algorithm for A.
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Reductions

Question: How could we prove that P = NP or P + NP?

» P = NP: Need to show that every problem in NP is also in P!

» P + NP: Need to prove that some problem in NP not in P.
» What is the “hardest” problem in NP?

Definition
Problem A is polytime reducible to problem B (written A <, B) if, given a polynomial-time
algorithm for B, we can use it to produce a polynomial-time algorithm for A.

Means that B is “at least as hard” as A: if B is in P, then so is A.

» So “hardest” problems in NP are problems that many other problems reduce to.
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Many-One (Karp) Reductions
Almost always (and always in this course), use a special type of reduction.

Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that

1. If x is a YES-instance of A then f(x) is a YES-instance of B.

2. If x is a NO-instance of A then f(x) is a NO-instance B.

3. f can be computed in polynomial time.
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Many-One (Karp) Reductions

Almost always (and always in this course), use a special type of reduction.
Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that
1. If x is a YES-instance of A then f(x) is a YES-instance of B.
2. If x is a NO-instance of A then f(x) is a NO-instance B.

3. f can be computed in polynomial time.
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Many-One (Karp) Reductions

Almost always (and always in this course), use a special type of reduction.
Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that
1. If x is a YES-instance of A then f(x) is a YES-instance of B.
2. If x is a NO-instance of A then f(x) is a NO-instance B.

3. f can be computed in polynomial time.

So given instance x of A, compute f(x) and use polytime

Y@ algorithm for B on f(x)
S > Polytime, since f in polytime and algorithm for B in polytime
s » Correct by first two properties of many-one reduction.
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NP-Completeness

So what is “hardest problem” in NP?

Definition
Problem Q is NP-hard if Q" <, Q for all problems Q" in NP. J
Definition
Problem @ is NP-complete if it is NP-hard and in NP. J
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NP-Completeness

So what is “hardest problem” in NP?

Definition
Problem Q is NP-hard if Q" <p Q for all problems Q" in NP. J
Definition
Problem Q is NP-complete if it is NP-hard and in NP. J

So suppose Q is NP-complete.

» To prove P + NP: Hardest problem in NP! If anything in NP is not in P, then @ is not
in P

» To prove P = NP: Just need to prove that @ € P.
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NP-Completeness

So what is “hardest problem” in NP?

Definition

Problem Q is NP-hard if Q" <p Q for all problems Q" in NP. J

Definition
Problem Q is NP-complete if it is NP-hard and in NP. J

So suppose Q is NP-complete.

» To prove P + NP: Hardest problem in NP! If anything in NP is not in P, then @ is not
in P

» To prove P = NP: Just need to prove that @ € P.

Is anything NP-complete?
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Circuit-SAT

Definition
Circuit-SAT: Given a boolean circuit with a single output and no loops (some inputs might be
hardwired), is there a way of setting the inputs so that the output of the circuit is 17

(oo kes A"/D ;/}>/
0 A %>’“ T

ol ——D—

Arkitrory Fon-on ¥ _— j> =

-
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Circuit-SAT

Theorem
Circuit-SAT is NP-complete. J

Sketch of proof here. See book for details.
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Circuit-SAT

Theorem

Circuit-SAT is NP-complete. J
Sketch of proof here. See book for details.

Lemma

Circuit-SAT is in NP. J
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Circuit-SAT

Theorem

Circuit-SAT is NP-complete. J
Sketch of proof here. See book for details.

Lemma J

Circuit-SAT is in NP.

Proof.

Witness is a T/F (or 1/0) assignment to inputs. Verifier simulates circuit on assignment,
checks that it outputs 1.
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Circuit-SAT

Theorem
Circuit-SAT is NP-complete. J

Sketch of proof here. See book for details.

Lemma
Circuit-SAT is in NP. J

Proof.

Witness is a T/F (or 1/0) assignment to inputs. Verifier simulates circuit on assignment,
checks that it outputs 1.

> If input is a YES instance then there is some assignment so circuit outputs 1. When
verifier run on that assignment, returns YES.

> In input is a NO instance then in every assignment circuit outputs 0. So verifier returns
NO on every witness.

[]

Jessica Sorrell Lecture 23: NP-Completeness | November 18, 2025 12/ 14



Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).
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Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about A?
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Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about A?
» In NP, so has verifier algorithm V
> V algorithm runs on a computer (or Turing machine)!
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Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about A?
» In NP, so has verifier algorithm V
> V algorithm runs on a computer (or Turing machine)!

Computer: memory + circuit for modifying memory!

\
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Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about A?
» In NP, so has verifier algorithm V
> V algorithm runs on a computer (or Turing machine)!

Computer: memory + circuit for modifying memory!

Not a boolean circuit in Circuit-SAT
sense: loops (feedback)

\

' [4
\ Cires b C I[" vV

l |

[remery S ¢

\
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Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about A?
» In NP, so has verifier algorithm V

> V algorithm runs on a computer (or Turing machine)!

Computer: memory + circuit for modifying memory!

Not a boolean circuit in Circuit-SAT
\ / sense: loops (feedback)

Fix: “Unroll” circuit using fact that
V runs in polynomial time

Jessica Sorrell
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Reduction
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Reduction

T N Reduction: given instance I of A, construct this circuit
I I/T_(/L/'{\ for V/, hardwire I. Combined circuit F(I)
Circnit C
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Reduction

T N Reduction: given instance I of A, construct this circuit
I I/T_(/L/'{\ for V/, hardwire I. Combined circuit F(I)
Cirenit C » Polytime since V runs in polytime
L L ( { [ (1 | ]
Mner g M |
T S A S Y A W
Circ~it C
C [ U T [t T ] yoniing  4ime f
MNerg M | /
L« C U [ (T 11 vl (8
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L L { [ | | ]
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Reduction

T /\_/L\ Reduction: given instance I of A, construct this circuit
}_,l%("l\ L for V/, hardwire I. Combined circuit (/)
Cirenit C » Polytime since V runs in polytime
L ( [ (1 | l .
- /“i"\"v{ i > If I YES of A: there is some X so that V(/, X)
T et C = YES
e S S S S Jeuning deme of = some X so that when X input to f(l),
T MZK”‘( Mi (1 (] | vu.’/{/ outputs 1
Circnit C == f (/) YES instance of Circuit-SAT.
| { [ {1 | ]
Mg M ) |
S R ——
Circnid C
L L { [ | | ]
/Mg M |
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Reduction

T N Reduction: given instance I of A, construct this circuit
}_,l%("l\ ,/T(/L/‘(\ for V/, hardwire I. Combined circuit (/)
Cirenit C » Polytime since V runs in polytime
: (l /“i"\"s(/{ M; (l ‘{ l\ 'I | > If I YES of A: there is some X so that V (I, X)
' St e — YES
e Jeuning deme of = some X so that when X input to f(l),
MNerg M | // 1
C « C U [ (T 17 verl (o7 outputs
Cirenid C == f (/) YES instance of Circuit-SAT.
R ] > If I NO of A: For every X, know that V(I,X) =
S R ——
NO
Circnit C :
= for every X, when X input to f(I), outputs

| { [ | | ]

MNer g MN | 0

| == f(I) NO instance of Circuit-SAT
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