Lecture 23: NP-Completeness I

Jessica Sorrell

November 18, 2025 601.433/633 Introduction to Algorithms Slides by Michael Dinitz

Introduction

Last few weeks: slower and slower algorithms for harder and harder problems

- From O(m + n) time algorithms for BFS/DFS/topological sort/SCCs, to $O(m^2n)$ for max flow
- ► Today: start of two lectures on NP-completeness.
 - ▶ The (or at least a) line between tractability and intractability

Introduction

Last few weeks: slower and slower algorithms for harder and harder problems

- From O(m + n) time algorithms for BFS/DFS/topological sort/SCCs, to $O(m^2n)$ for max flow
- ► Today: start of two lectures on NP-completeness.
 - The (or at least a) line between tractability and intractability

Definition

An algorithm runs in *polynomial time* if its (worst-case) running time is $O(n^c)$ for some constant $c \ge 0$, where n is the size of the input.

Think of polynomial time as "fast", super-polynomial time as "slow"

Introduction

Last few weeks: slower and slower algorithms for harder and harder problems

- From O(m + n) time algorithms for BFS/DFS/topological sort/SCCs, to $O(m^2n)$ for max flow
- ► Today: start of two lectures on NP-completeness.
 - The (or at least a) line between tractability and intractability

Definition

An algorithm runs in *polynomial time* if its (worst-case) running time is $O(n^c)$ for some constant $c \ge 0$, where n is the size of the input.

Think of polynomial time as "fast", super-polynomial time as "slow"

Question: When do polynomial-time algorithms exist?

Definition

A decision problem is a computational problem in which the output is either YES or NO.

Definition

A decision problem is a computational problem in which the output is either YES or NO.

- ▶ Max-Flow: Input is $G = (V, E), c : E \to \mathbb{R}_{\geq 0}, s, t \in V, k \in \mathbb{R}^+$. Output YES if there is an (s, t)-flow of value at least k, otherwise output NO.
- ▶ Shortest s t path: Input is $G = (V, E), \ell : E \to \mathbb{R}, s, t \in V, k \in \mathbb{R}$. Output YES if $d(s, t) \le k$, otherwise output NO.

Definition

A decision problem is a computational problem in which the output is either YES or NO.

Examples:

- ▶ Max-Flow: Input is $G = (V, E), c : E \to \mathbb{R}_{\geq 0}, s, t \in V, k \in \mathbb{R}^+$. Output YES if there is an (s, t)-flow of value at least k, otherwise output NO.
- ▶ Shortest s t path: Input is $G = (V, E), \ell : E \to \mathbb{R}, s, t \in V, k \in \mathbb{R}$. Output YES if $d(s, t) \le k$, otherwise output NO.

Some problems naturally decision, others naturally optimization, but can turn any optimization problem into a decision problem.

▶ If can solve decision, can almost always solve optimization.

Definition

A decision problem is a computational problem in which the output is either YES or NO.

Examples:

- ▶ Max-Flow: Input is $G = (V, E), c : E \to \mathbb{R}_{\geq 0}, s, t \in V, k \in \mathbb{R}^+$. Output YES if there is an (s, t)-flow of value at least k, otherwise output NO.
- ▶ Shortest s t path: Input is $G = (V, E), \ell : E \to \mathbb{R}, s, t \in V, k \in \mathbb{R}$. Output YES if $d(s, t) \le k$, otherwise output NO.

Some problems naturally decision, others naturally optimization, but can turn any optimization problem into a decision problem.

▶ If can solve decision, can almost always solve optimization.

Note: Can divide instances (inputs) of any decision problem into YES-instances and NO-instances

 \boldsymbol{P} is the set of decision problems that can be solved in polynomial time.

Note: problems are in **P**, not algorithms

P is the set of decision problems that can be solved in polynomial time.

Note: problems are in **P**, not algorithms

Question: Are all decision problems in **P**?

P is the set of decision problems that can be solved in polynomial time.

Note: problems are in **P**, not algorithms

Question: Are all decision problems in **P**?

Answer: No!

P is the set of decision problems that can be solved in polynomial time.

Note: problems are in **P**, not algorithms

Question: Are all decision problems in **P**?

Answer: No!

- By time hierarchy theorem there are problems that require super-polynomial time!
- Undecidability: there are problems which cannot be solved by any algorithm at all!

Different Setting: If *in addition* to the input we're given a purported solution, can we check that this solution is valid/feasible (in polynomial time)?

▶ Max-Flow: given $f : E \to \mathbb{R}_{\geq 0}$, check that value $\geq k$, flow conservation at all nodes other than s, t, and capacity constraints obeyed

Different Setting: If *in addition* to the input we're given a purported solution, can we check that this solution is valid/feasible (in polynomial time)?

▶ Max-Flow: given $f : E \to \mathbb{R}_{\geq 0}$, check that value $\geq k$, flow conservation at all nodes other than s, t, and capacity constraints obeyed

Definition (3-Coloring)

Input: Undirected graph G = (V, E)

Output: YES if \exists coloring $f: V \rightarrow \{R, G, B\}$ such that $f(u) \neq f(v)$ for all $\{u, v\} \in E$. NO

otherwise

Different Setting: If *in addition* to the input we're given a purported solution, can we check that this solution is valid/feasible (in polynomial time)?

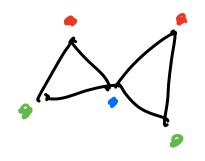
▶ Max-Flow: given $f : E \to \mathbb{R}_{\geq 0}$, check that value $\geq k$, flow conservation at all nodes other than s, t, and capacity constraints obeyed

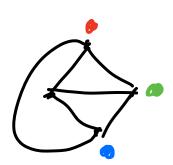
Definition (3-Coloring)

Input: Undirected graph G = (V, E)

Output: YES if \exists coloring $f: V \rightarrow \{R, G, B\}$ such that $f(u) \neq f(v)$ for all $\{u, v\} \in E$. NO

otherwise





Different Setting: If *in addition* to the input we're given a purported solution, can we check that this solution is valid/feasible (in polynomial time)?

▶ Max-Flow: given $f : E \to \mathbb{R}_{\geq 0}$, check that value $\geq k$, flow conservation at all nodes other than s, t, and capacity constraints obeyed

Definition (3-Coloring)

Input: Undirected graph G = (V, E)

Output: YES if \exists coloring $f: V \rightarrow \{R, G, B\}$ such that $f(u) \neq f(v)$ for all $\{u, v\} \in E$. NO

otherwise

Verification: Given f,

- ▶ Check that $f(u) \in \{R, G, B\}$ for all $u \in V$, and
- ▶ Check each edge $\{u, v\}$ to make sure that $f(u) \neq f(v)$

NP: decision problems where solutions can be *verified* in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial time algorithm V(I,X) (called the verifier) such that

- 1. If I is a YES-instance of Q, then there is some X (usually called the witness, proof, or solution) with size polynomial in |I| so that V(I,X) = YES.
- 2. If I is a NO-instance of Q, then V(I, X) = NO for all X.

NP: decision problems where solutions can be *verified* in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial time algorithm V(I,X) (called the verifier) such that

- 1. If I is a YES-instance of Q, then there is some X (usually called the witness, proof, or solution) with size polynomial in |I| so that V(I,X) = YES.
- 2. If I is a NO-instance of Q, then V(I, X) = NO for all X.

- ▶ 3-coloring: Witness X is a coloring $f: V \to \{R, B, G\}$, verifier checks each edge $\{u, v\}$ to make sure $f(u) \neq f(v)$
 - ▶ If *I* is a YES instance, then there is a coloring so verifier will return YES
 - If I is a NO instance, then no valid coloring exists. Whatever X is, verifier returns NO.

NP: decision problems where solutions can be *verified* in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial time algorithm V(I,X) (called the verifier) such that

- 1. If I is a YES-instance of Q, then there is some X (usually called the witness, proof, or solution) with size polynomial in |I| so that V(I,X) = YES.
- 2. If I is a NO-instance of Q, then V(I, X) = NO for all X.

- ▶ Max-Flow: Witness X is a flow $f : E \to \mathbb{R}_{\geq 0}$, verifier checks that it's feasible of value $\geq k$
 - If I is a YES instance, then there is a feasible flow of value at least k so verifier (on this flow) will return YES
 - ▶ If I a NO instance, then no feasible flow of value $\geq k$. Whatever X is, verifier returns NO.

NP: decision problems where solutions can be *verified* in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial time algorithm V(I,X) (called the verifier) such that

- 1. If I is a YES-instance of Q, then there is some X (usually called the witness, proof, or solution) with size polynomial in |I| so that V(I,X) = YES.
- 2. If I is a NO-instance of Q, then V(I, X) = NO for all X.

- ▶ Factoring: Instance is pair of integers M, k. YES if M has as factor in $\{2, ..., k\}$, NO otherwise.
 - ▶ Witness: integer f in $\{2,3,...,k\}$. Verifier: returns YES if M/f is an integer and $f \in \{2,...,k\}$, NO otherwise.
 - If YES instance, then an f does exist so verifier returns YES on that f. If NO, then no such f exists so verifier always returns NO.

NP: decision problems where solutions can be *verified* in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial time algorithm V(I,X) (called the verifier) such that

- 1. If I is a YES-instance of Q, then there is some X (usually called the witness, proof, or solution) with size polynomial in |I| so that V(I,X) = YES.
- 2. If I is a NO-instance of Q, then V(I, X) = NO for all X.

- ▶ Traveling Salesman: Instance is weighted graph G and integer k. YES iff G has a tour (walk that touches very vertex at least once) of length $\leq k$.
 - ightharpoonup Witness: tour ightharpoonup. Verifier checks that it is a tour, has length at most ightharpoonup
 - ▶ If YES instance, then such a tour exists ⇒ verifier returns YES on that tour.
 - ▶ If NO, no such tour exists ⇒ verifier always returns NO.

NP: decision problems where solutions can be *verified* in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial time algorithm V(I,X) (called the verifier) such that

- 1. If I is a YES-instance of Q, then there is some X (usually called the witness, proof, or solution) with size polynomial in |I| so that V(I,X) = YES.
- 2. If I is a NO-instance of Q, then V(I, X) = NO for all X.

Important asymmetry: need a witness for YES, not a witness for NO.

Theorem

 $P \subseteq NP$

Theorem

 $P \subseteq NP$

Proof.

Let $Q \in P$.

V(I,X): Ignore X, solve on instance I.

Theorem

 $P \subseteq NP$

Proof.

Let $Q \in P$.

V(I,X): Ignore X, solve on instance I.

Question: Does P = NP, i.e., is $NP \subseteq P$?

Theorem

 $P \subseteq NP$

Proof.

Let $Q \in P$.

V(I,X): Ignore X, solve on instance I.

Question: Does P = NP, i.e., is $NP \subseteq P$?

- Almost everyone thinks no, but we don't know for sure!
- ▶ Not even particularly close to a proof.
- ► Think about what **P** = **NP** would mean...

Question: How could we prove that P = NP or $P \neq NP$?

Question: How could we prove that P = NP or $P \neq NP$?

- P = NP: Need to show that every problem in NP is also in P!
- ▶ $P \neq NP$: Need to prove that <u>some</u> problem in NP not in P.
 - What is the "hardest" problem in NP?

Question: How could we prove that P = NP or $P \neq NP$?

- P = NP: Need to show that every problem in NP is also in P!
- ▶ $P \neq NP$: Need to prove that <u>some</u> problem in NP not in P.
 - ▶ What is the "hardest" problem in **NP**?

Definition

Problem A is polytime reducible to problem B (written $A \leq_p B$) if, given a polynomial-time algorithm for B, we can use it to produce a polynomial-time algorithm for A.

Question: How could we prove that P = NP or $P \neq NP$?

- P = NP: Need to show that every problem in NP is also in P!
- ▶ $P \neq NP$: Need to prove that <u>some</u> problem in NP not in P.
 - ▶ What is the "hardest" problem in **NP**?

Definition

Problem \boldsymbol{A} is *polytime reducible* to problem \boldsymbol{B} (written $\boldsymbol{A} \leq_{\boldsymbol{p}} \boldsymbol{B}$) if, given a polynomial-time algorithm for \boldsymbol{B} , we can use it to produce a polynomial-time algorithm for \boldsymbol{A} .

Means that \boldsymbol{B} is "at least as hard" as \boldsymbol{A} : if \boldsymbol{B} is in \boldsymbol{P} , then so is \boldsymbol{A} .

▶ So "hardest" problems in *NP* are problems that many other problems reduce to.

Many-One (Karp) Reductions

Almost always (and always in this course), use a special type of reduction.

Definition

A Many-one or Karp reduction from \boldsymbol{A} to \boldsymbol{B} is a function \boldsymbol{f} which takes arbitrary instances of \boldsymbol{A} and transforms them into instances of \boldsymbol{B} so that

- 1. If x is a YES-instance of A then f(x) is a YES-instance of B.
- 2. If x is a NO-instance of A then f(x) is a NO-instance B.
- 3. \mathbf{f} can be computed in polynomial time.

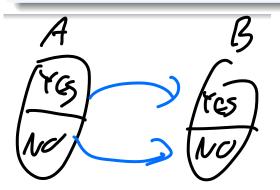
Many-One (Karp) Reductions

Almost always (and always in this course), use a special type of reduction.

Definition

A Many-one or Karp reduction from \boldsymbol{A} to \boldsymbol{B} is a function \boldsymbol{f} which takes arbitrary instances of \boldsymbol{A} and transforms them into instances of \boldsymbol{B} so that

- 1. If x is a YES-instance of A then f(x) is a YES-instance of B.
- 2. If x is a NO-instance of A then f(x) is a NO-instance B.
- 3. \mathbf{f} can be computed in polynomial time.



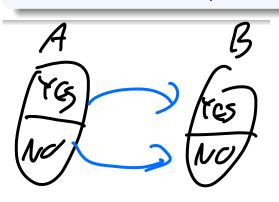
Many-One (Karp) Reductions

Almost always (and always in this course), use a special type of reduction.

Definition

A Many-one or Karp reduction from \boldsymbol{A} to \boldsymbol{B} is a function \boldsymbol{f} which takes arbitrary instances of \boldsymbol{A} and transforms them into instances of \boldsymbol{B} so that

- 1. If x is a YES-instance of A then f(x) is a YES-instance of B.
- 2. If x is a NO-instance of A then f(x) is a NO-instance B.
- 3. \mathbf{f} can be computed in polynomial time.



So given instance x of A, compute f(x) and use polytime algorithm for B on f(x)

- ightharpoonup Polytime, since f in polytime and algorithm for B in polytime
- Correct by first two properties of many-one reduction.

NP-Completeness

So what is "hardest problem" in **NP**?

Definition

Problem Q is NP-hard if $Q' \leq_p Q$ for all problems Q' in NP.

Definition

Problem Q is NP-complete if it is NP-hard and in NP.

NP-Completeness

So what is "hardest problem" in **NP**?

Definition

Problem Q is NP-hard if $Q' \leq_p Q$ for all problems Q' in NP.

Definition

Problem Q is NP-complete if it is NP-hard and in NP.

So suppose Q is NP-complete.

- ▶ To prove $P \neq NP$: Hardest problem in NP! If anything in NP is not in P, then Q is not in P
- ▶ To prove P = NP: Just need to prove that $Q \in P$.

NP-Completeness

So what is "hardest problem" in **NP**?

Definition

Problem Q is NP-hard if $Q' \leq_p Q$ for all problems Q' in NP.

Definition

Problem Q is NP-complete if it is NP-hard and in NP.

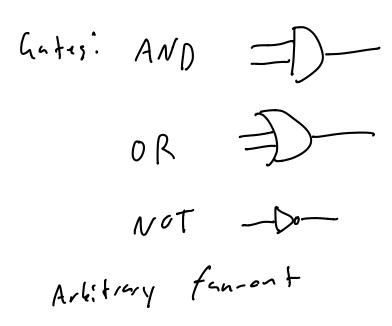
So suppose Q is NP-complete.

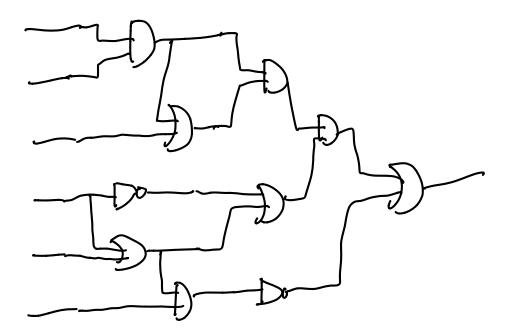
- ▶ To prove $P \neq NP$: Hardest problem in NP! If anything in NP is not in P, then Q is not in P
- ▶ To prove P = NP: Just need to prove that $Q \in P$.

Is anything **NP**-complete?

Definition

Circuit-SAT: Given a boolean circuit with a single output and no loops (some inputs might be hardwired), is there a way of setting the inputs so that the output of the circuit is 1?





Theorem

Circuit-SAT is **NP**-complete.

Sketch of proof here. See book for details.

Theorem

Circuit-SAT is **NP**-complete.

Sketch of proof here. See book for details.

Lemma

Circuit-SAT is in NP.

Theorem

Circuit-SAT is **NP**-complete.

Sketch of proof here. See book for details.

Lemma

Circuit-SAT is in **NP**.

Proof.

Witness is a T/F (or 1/0) assignment to inputs. Verifier simulates circuit on assignment, checks that it outputs $\bf 1$.

Theorem

Circuit-SAT is **NP**-complete.

Sketch of proof here. See book for details.

Lemma

Circuit-SAT is in NP.

Proof.

Witness is a T/F (or 1/0) assignment to inputs. Verifier simulates circuit on assignment, checks that it outputs $\mathbf{1}$.

- ▶ If input is a YES instance then there is some assignment so circuit outputs 1. When verifier run on that assignment, returns YES.
- ▶ In input is a NO instance then in every assignment circuit outputs **0**. So verifier returns NO on every witness.

Let $A \in NP$. Want to show $A \leq_p$ Circuit-SAT (construct a many-one reduction).

Let $A \in NP$. Want to show $A \leq_p$ Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about **A**?

Let $A \in NP$. Want to show $A \leq_p$ Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about **A**?

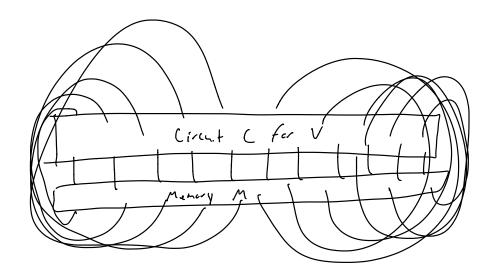
- ▶ In *NP*, so has verifier algorithm *V*
- ightharpoonup V algorithm runs on a computer (or Turing machine)!

Let $A \in NP$. Want to show $A \leq_p$ Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about **A**?

- ▶ In *NP*, so has verifier algorithm *V*
- ▶ **V** algorithm runs on a computer (or Turing machine)!

Computer: memory + circuit for modifying memory!

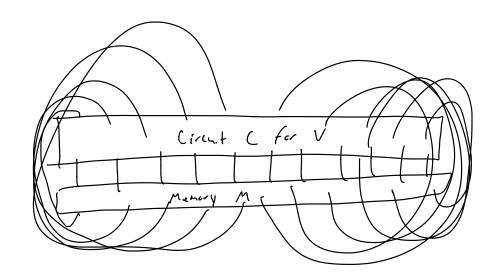


Let $A \in NP$. Want to show $A \leq_p$ Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about **A**?

- ▶ In *NP*, so has verifier algorithm *V*
- ▶ **V** algorithm runs on a computer (or Turing machine)!

Computer: memory + circuit for modifying memory!



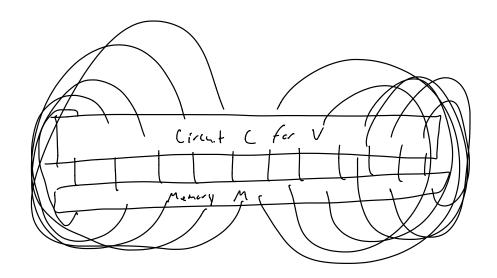
Not a boolean circuit in Circuit-SAT sense: loops (feedback)

Let $A \in NP$. Want to show $A \leq_p$ Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about **A**?

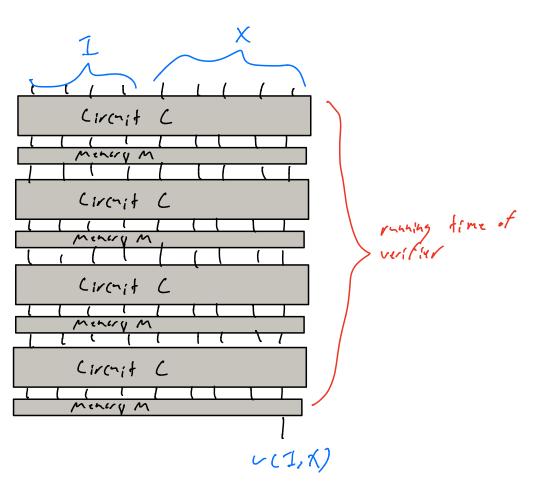
- ▶ In *NP*, so has verifier algorithm *V*
- ▶ **V** algorithm runs on a computer (or Turing machine)!

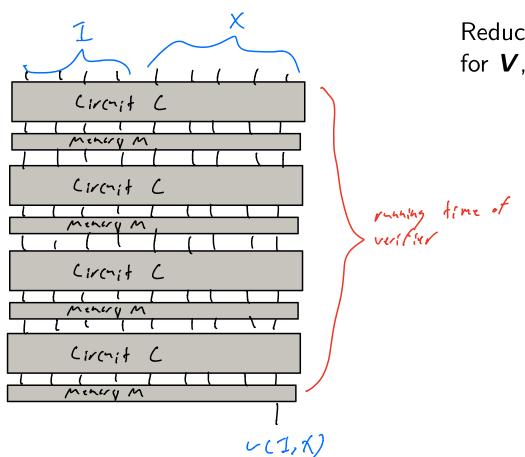
Computer: memory + circuit for modifying memory!



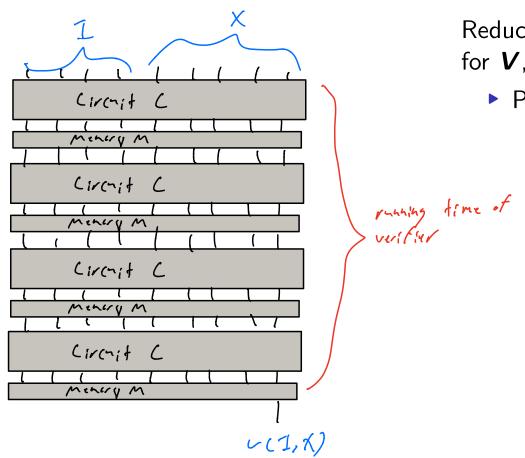
Not a boolean circuit in Circuit-SAT sense: loops (feedback)

Fix: "Unroll" circuit using fact that **V** runs in polynomial time



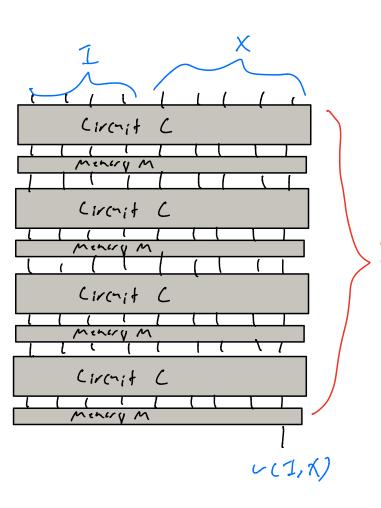


Reduction: given instance I of A, construct this circuit for V, hardwire I. Combined circuit f(I)



Reduction: given instance I of A, construct this circuit for V, hardwire I. Combined circuit f(I)

▶ Polytime since **V** runs in polytime

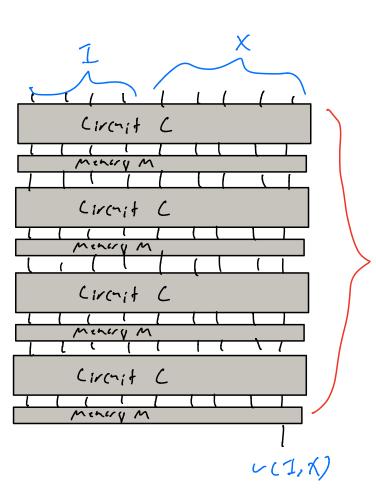


Reduction: given instance I of A, construct this circuit for V, hardwire I. Combined circuit f(I)

- Polytime since V runs in polytime
- If I YES of A: there is some X so that V(I, X)
 = YES

runing fine $f \Longrightarrow \text{some } X \text{ so that when } X \text{ input to } f(I),$ vulture outputs 1

 \implies f(I) YES instance of Circuit-SAT.



Reduction: given instance I of A, construct this circuit for V, hardwire I. Combined circuit f(I)

- Polytime since V runs in polytime
- If I YES of A: there is some X so that V(I, X) = YES
- runing fine $f \Longrightarrow$ some $m{X}$ so that when $m{X}$ input to $m{f(I)},$ vulture outputs $m{1}$
 - \implies f(I) YES instance of Circuit-SAT.
 - ▶ If \boldsymbol{I} NO of \boldsymbol{A} : For every \boldsymbol{X} , know that $\boldsymbol{V}(\boldsymbol{I},\boldsymbol{X}) = \mathsf{NO}$
 - \implies for every X, when X input to f(I), outputs
 - $\implies f(I)$ NO instance of Circuit-SAT