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Introduction

Last few weeks: slower and slower algorithms for harder and harder problems
» From O(m + n) time algorithms for BFS/DFS /topological sort/SCCs, to O(m?n) for
max flow
» Today: start of two lectures on NP-completeness.
> The (or at least a) line between tractability and intractability
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Introduction

Last few weeks: slower and slower algorithms for harder and harder problems
» From O(m + n) time algorithms for BFS/DFS /topological sort/SCCs, to O(m?n) for
max flow

» Today: start of two lectures on NP-completeness.
> The (or at least a) line between tractability and intractability

Definition
An algorithm runs in polynomial time if its (worst-case) running time is O(n€) for some
constant ¢ > 0, where n is the size of the input.

Think of polynomial time as “fast”, super-polynomial time as “slow”

Michael Dinitz Lecture 23: NP-Completeness | November 18, 2025 2/14



Introduction

Last few weeks: slower and slower algorithms for harder and harder problems
» From O(m + n) time algorithms for BFS/DFS /topological sort/SCCs, to O(m?n) for
max flow

» Today: start of two lectures on NP-completeness.
> The (or at least a) line between tractability and intractability

Definition
An algorithm runs in polynomial time if its (worst-case) running time is O(n€) for some
constant ¢ > 0, where n is the size of the input.

Think of polynomial time as “fast”, super-polynomial time as “slow”

Question: When do polynomial-time algorithms exist?
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Decision Problems

A decision problem is a computational problem in which the output is either YES or NO.

Definition J
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Decision Problems
Definition

A decision problem is a computational problem in which the output is either YES or NO.

Examples:

» Max-Flow: Inputis G = (V,E),c: E - Ryp,s,t e V,keR* Output YES if there is an
(s, t)-flow of value at least k, otherwise output NO.

» Shortest s - t path: Inputis G = (V,E),£: E > R,s,te V,keR. Output YES if
d(s,t) < k, otherwise output NO.
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Decision Problems
Definition

A decision problem is a computational problem in which the output is either YES or NO.

Examples:

» Max-Flow: Inputis G = (V,E),c: E - Ryp,s,t e V,keR* Output YES if there is an
(s, t)-flow of value at least k, otherwise output NO.

» Shortest s - t path: Inputis G = (V,E),£: E > R,s,te V,keR. Output YES if
d(s,t) < k, otherwise output NO.
Some problems naturally decision, others naturally optimization, but can turn any optimization

problem into a decision problem.

» If can solve decision, can almost always solve optimization.

Michael Dinitz Lecture 23: NP-Completeness | November 18, 2025 3/14



Decision Problems

Definition

A decision problem is a computational problem in which the output is either YES or NO.

Examples:

» Max-Flow: Inputis G = (V,E),c: E - Ryp,s,t e V,keR* Output YES if there is an
(s, t)-flow of value at least k, otherwise output NO.

» Shortest s - t path: Inputis G = (V,E),£: E > R,s,te V,keR. Output YES if
d(s,t) < k, otherwise output NO.
Some problems naturally decision, others naturally optimization, but can turn any optimization
problem into a decision problem.
» If can solve decision, can almost always solve optimization.
Note: Can divide instances (inputs) of any decision problem into YES-instances and
NO-instances
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Definition

P is the set of decision problems that can be solved in polynomial time. J

Note: problems are in P, not algorithms
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Definition

P is the set of decision problems that can be solved in polynomial time.

Note: problems are in P, not algorithms

Question: Are all decision problems in P?
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Definition
P is the set of decision problems that can be solved in polynomial time.

Note: problems are in P, not algorithms

Question: Are all decision problems in P?
Answer: No!
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Definition

P is the set of decision problems that can be solved in polynomial time.

Note: problems are in P, not algorithms

Question: Are all decision problems in P?
Answer: No!
» By time hierarchy theorem there are problems that require super-polynomial time!

» Undecidability: there are problems which cannot be solved by any algorithm at all!
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Verification

Different Setting: If in addition to the input we're given a purported solution, can we check
that this solution is valid/feasible (in polynomial time)?

» Max-Flow: given f: E - Rsq, check that value > k, flow conservation at all nodes other
than s, t, and capacity constraints obeyed
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Verification

Different Setting: If in addition to the input we're given a purported solution, can we check
that this solution is valid/feasible (in polynomial time)?
» Max-Flow: given f: E - Rsq, check that value > k, flow conservation at all nodes other
than s, t, and capacity constraints obeyed

Definition (3-Coloring)

Input: Undirected graph G = (V, E)

Output: YES if 3 coloring f : V - {R, G, B} such that f(u) # f(v) for all {u,v} e E. NO
otherwise
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Verification
Different Setting: If in addition to the input we're given a purported solution, can we check
that this solution is valid/feasible (in polynomial time)?

» Max-Flow: given f: E - Rsq, check that value > k, flow conservation at all nodes other
than s, t, and capacity constraints obeyed

Definition (3-Coloring)

Input: Undirected graph G = (V, E)
Output: YES if 3 coloring f : V - {R, G, B} such that f(u) # f(v) for all {u,v} e E. NO
otherwise

Verification: Given f,
» Check that f(u) € {R,G,B} for all ue V, and
» Check each edge {u, v} to make sure that f(u) # f(v)
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NP

NP: decision problems where solutions can be verified in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V/ (1, X) (called the verifier) such that

1. If I'is a YES-instance of Q, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V(/, X) = YES.
2. If I is a NO-instance of @, then V(/,X) = NO for all X.
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NP

NP: decision problems where solutions can be verified in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V/ (1, X) (called the verifier) such that

1. If I'is a YES-instance of Q, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V(/, X) = YES.
2. If I is a NO-instance of @, then V(/,X) = NO for all X.

Examples:

» 3-coloring: Witness X is a coloring f: V - {R, B, G}, verifier checks each edge {u, v}
to make sure f(u) # f(v)
> If I is a YES instance, then there is a coloring so verifier will return YES
> If I is a NO instance, then no valid coloring exists. Whatever X is, verifier returns NO.
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NP

NP: decision problems where solutions can be verified in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V/ (1, X) (called the verifier) such that

1. If I'is a YES-instance of Q, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V(/, X) = YES.
2. If I is a NO-instance of @, then V(/,X) = NO for all X.

Examples:

» Max-Flow: Witness X is a flow f : E — Ry, verifier checks that it's feasible of value > k

» If I is a YES instance, then there is a feasible flow of value at least k so verifier (on this
flow) will return YES

» If I a NO instance, then no feasible flow of value > k. Whatever X is, verifier returns NO.
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NP

NP: decision problems where solutions can be verified in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V/ (1, X) (called the verifier) such that

1. If I'is a YES-instance of Q, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V(/, X) = YES.
2. If I is a NO-instance of @, then V(/,X) = NO for all X.

Examples:

» Factoring: Instance is pair of integers M, k. YES if M has as factor in {2,...,k}, NO
otherwise.

> Witness: integer f in {2,3,...,k}. Verifier: returns YES if M/f is an integer and
fe{2,...,k}, NO otherwise.

» If YES instance, then an f does exist so verifier returns YES on that f. If NO, then no such
f exists so verifier always returns NO.
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NP

NP: decision problems where solutions can be verified in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V/ (1, X) (called the verifier) such that

1. If I'is a YES-instance of Q, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V(/, X) = YES.
2. If I is a NO-instance of @, then V(/,X) = NO for all X.

Examples:

» Traveling Salesman: Instance is weighted graph G and integer k. YES iff G has a tour
(walk that touches very vertex at least once) of length < k.
> Witness: tour P. Verifier checks that it is a tour, has length at most k
» If YES instance, then such a tour exists == verifier returns YES on that tour.
> If NO, no such tour exists == verifier always returns NO.
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NP

NP: decision problems where solutions can be verified in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial

time algorithm V/ (1, X) (called the verifier) such that

1. If I'is a YES-instance of Q, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V(/, X) = YES.
2. If I is a NO-instance of @, then V(/,X) = NO for all X.

Important asymmetry: need a witness for YES, not a witness for NO.

Michael Dinitz Lecture 23: NP-Completeness | November 18, 2025

6/14







P vs NP

Theorem
P c NP

Proof.
Let Q € P.
V(1,X): Ignore X, solve on instance I.
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P vs NP

Theorem
P c NP

Proof.
Let Q € P.
V(1,X): Ignore X, solve on instance I.

Question: Does P= NP, i.e., is NP c P?
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P vs NP

Theorem
P c NP

Proof.
Let Q € P.
V (I, X): Ignore X, solve on instance /.

Question: Does P = NP, ie., is NP c P?
» Almost everyone thinks no, but we don't know for sure!
> Not even particularly close to a proof.
» Think about what P = NP would mean. ..
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Reductions

Question: How could we prove that P = NP or P + NP?
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Reductions

Question: How could we prove that P = NP or P + NP?

» P = NP: Need to show that every problem in NP is also in P!
» P+ NP: Need to prove that some problem in NP not in P.
» What is the "hardest” problem in NP?
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Reductions

Question: How could we prove that P = NP or P + NP?

» P = NP: Need to show that every problem in NP is also in P!
» P+ NP: Need to prove that some problem in NP not in P.
» What is the "hardest” problem in NP?

Definition

Problem A is polytime reducible to problem B (written A <, B) if, given a polynomial-time
algorithm for B, we can use it to produce a polynomial-time algorithm for A.
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Reductions

Question: How could we prove that P = NP or P + NP?

» P = NP: Need to show that every problem in NP is also in P!

» P+ NP: Need to prove that some problem in NP not in P.
» What is the "hardest” problem in NP?

Definition

Problem A is polytime reducible to problem B (written A <, B) if, given a polynomial-time
algorithm for B, we can use it to produce a polynomial-time algorithm for A.

Means that B is “at least as hard“ as A: if B is in P, then so is A.

» So “hardest” problems in NP are problems that many other problems reduce to.
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Many-One (Karp) Reductions

Almost always (and always in this course), use a special type of reduction.
Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that
1. If x is a YES-instance of A then f(x) is a YES-instance of B.
2. If x is a NO-instance of A then f(x) is a NO-instance B.

3. f can be computed in polynomial time.
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Almost always (and always in this course), use a special type of reduction.
Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that
1. If x is a YES-instance of A then f(x) is a YES-instance of B.
2. If x is a NO-instance of A then f(x) is a NO-instance B.
3. f can be computed in polynomial time.

A 5
Y@ >
N
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Many-One (Karp) Reductions

Almost always (and always in this course), use a special type of reduction.
Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that
1. If x is a YES-instance of A then f(x) is a YES-instance of B.
2. If x is a NO-instance of A then f(x) is a NO-instance B.
3. f can be computed in polynomial time.

A 5 So given instance x of A, compute f(x) and use polytime
Yg algorithm for B on f(x)
S » Polytime, since f in polytime and algorithm for B in polytime
&7@ » Correct by first two properties of many-one reduction.
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NP-Completeness

So what is “hardest problem” in NP?

Definition

Problem Q is NP-hard if Q" <p Q for all problems Q" in NP. J

Definition

Problem Q is NP-complete if it is NP-hard and in NP. J
Michael Dinitz
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NP-Completeness

So what is “hardest problem” in NP?

Definition

Problem Q is NP-hard if Q" <p Q for all problems Q" in NP.

Definition
Problem Q is NP-complete if it is NP-hard and in NP.

So suppose Q is NP-complete.

» To prove P + NP: Hardest problem in NP! If anything in NP is not in P, then Q is not
in P

» To prove P = NP: Just need to prove that Q € P.
Michael Dinitz
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NP-Completeness

So what is “hardest problem” in NP?

Definition

Problem Q is NP-hard if Q" <p Q for all problems Q" in NP. ‘

Definition
Problem Q is NP-complete if it is NP-hard and in NP. (

So suppose Q is NP-complete.
» To prove P + NP: Hardest problem in NP! If anything in NP is not in P, then Q is not
in P
» To prove P = NP: Just need to prove that Q € P.
Is anything NP-complete?
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Circuit-SAT

Definition
Circuit-SAT: Given a boolean circuit with a single output and no loops (some inputs might be
hardwired), is there a way of setting the inputs so that the output of the circuit is 1?7

Lok AN ::D/
0 R %f R

wvol — —D—
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Circuit-SAT
Theorem
Circuit-SAT is NP-complete.

Sketch of proof here. See book for details
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Circuit-SAT
Theorem
Circuit-SAT is NP-complete.

Sketch of proof here. See book for details.
Lemma
Circuit-SAT is in NP. J
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Circuit-SAT

Theorem
Circuit-SAT is NP-complete.

Sketch of proof here. See book for details.

Lemma
Circuit-SAT is in NP.

Proof.

Witness is a T/F (or 1/0) assignment to inputs. Verifier simulates circuit on assignment,
checks that it outputs 1.
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Circuit-SAT

Theorem
Circuit-SAT is NP-complete.

Sketch of proof here. See book for details.

Lemma
Circuit-SAT is in NP.

Proof.

Witness is a T/F (or 1/0) assignment to inputs. Verifier simulates circuit on assignment,
checks that it outputs 1.
» If input is a YES instance then there is some assignment so circuit outputs 1. When
verifier run on that assignment, returns YES.

» In input is a NO instance then in every assignment circuit outputs 0. So verifier returns
NO on every witness.

Ol
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Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).
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Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about A?
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Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about A?
» In NP, so has verifier algorithm V
» V algorithm runs on a computer (or Turing machine)!

Michael Dinitz Lecture 23: NP-Completeness | November 18, 2025 13 /14



Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about A?
» In NP, so has verifier algorithm V
» V algorithm runs on a computer (or Turing machine)!

Computer: memory + circuit for modifying memory!
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Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about A?
» In NP, so has verifier algorithm V
» V algorithm runs on a computer (or Turing machine)!

Computer: memory + circuit for modifying memory!

Not a boolean circuit in Circuit-SAT
sense: loops (feedback)
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Circuit-SAT is NP-hard

Let Ae NP. Want to show A <, Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about A?
» In NP, so has verifier algorithm V
» V algorithm runs on a computer (or Turing machine)!

Computer: memory + circuit for modifying memory!

Not a boolean circuit in Circuit-SAT
sense: loops (feedback)

Fix: “Unroll” circuit using fact that
V runs in polynomial time

Michael Dinitz Lecture 23: NP-Completeness | November 18, 2025 13 /14



Reduction
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Reduction
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Reduction

Michael Dinitz

2
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Reduction: given instance I of A, construct this circuit
for V, hardwire I. Combined circuit f(I)

» Polytime since V runs in polytime

beme o
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Reduction

T /\/L\ Reduction: given instance I of A, construct this circuit
Mt“‘l\ L for V, hardwire I. Combined circuit f(I)
| Circnit C ‘ > Polytime since V runs in polytime
': ‘l /A‘;w&(n«{ ‘[ ‘! ‘\ 'I | > If I YES of A: there is some X so that V(I, X)
= YES
Circ~it C .
! e e e || sty drrme -F = some X so that when X input to f(),
T ( C [ [ (1 W,vf.'{/ outputs 1
| Coeit C | == f(I) YES instance of Circuit-SAT.
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Reduction

T X Reduction: given instance I of A, construct this circuit
?‘—’l/h I/\l(/k/—(\ for V, hardwire I. Combined circuit f(I)
| Circnit C ‘ > Polytime since V runs in polytime
': ‘l /A‘;w&(n«; ‘[ ‘! ‘\ 'I | > If I YES of A: there is some X so that V(I, X)
= YES
Cire~it C .
| —T ,’C N S —— ‘ ey dene o# == some X so that when X input to f(/),
P ———— W,vf.'{/ outputs 1
| Civemit C | == f (/) YES instance of Circuit-SAT.
R » If I NO of A: For every X, know that V(/,X) =
| [ ¢ ( { T A NO
Cireng .
| — ¢ ,+ l(' e —— | = for every X, when X input to f(I), outputs
[ /Nenerg M | 0

! == f(I) NO instance of Circuit-SAT

Michael Dinitz Lecture 23: NP-Completeness | November 18, 2025 14 /14



