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Introduction

Last time: Definition of P, NP, reductions, NP-completeness. Proof that Circuit-SAT is
NP-complete.

Today: more NP-complete problems.

Definition
A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V/ (I, X) (called the verifier) such that
1. If I is a YES-instance of @, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V(/,X) = YES.
2. If I'is a NO-instance of Q, then V(/,X) = NO for all X.
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Reductions

Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that

1. If x is a YES-instance of A then f(x) is a YES-instance of B.
2. If x is a NO-instance of A then f(x) is a NO-instance B.

3. f can be computed in polynomial time.

Definition
Problem Q is NP-hard if Q" <, Q for all problems Q" in NP. Problem Q is NP-complete if
it is NP-hard and in NP.
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Circuit-SAT

Definition
Circuit-SAT: Given a boolean circuit of AND, OR, and NOT gates, with a single output and
no loops (some inputs might be hardwired), is there a way of setting the inputs so that the

output of the circuit is 17 )
Theorem
Circuit-SAT is NP-complete. J
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3-SAT

Boolean formula:
> Boolean variables x1,...,Xp
> Literal: variable x; or negation X;
> AND: A OR: v
> x1V(Xx5Ax7)A (X2 Vv (X6AX3))...
Conjunctive normal form (CNF): AND of ORs (clauses)

> (x1vxavxg)A(xavx3)A(X1VXgVXp)-...
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3-SAT

Boolean formula:

» Boolean variables x1,...,Xp Wi )/L

> Literal: variable x; or negation X;

> AND: A OR: v
> x1V(Xx5Ax7)A (X2 Vv (X6AX3))...
Conjunctive normal form (CNF): AND of ORs (clauses) >

> (xpvxovxg)A(xavx3)A(Xx1VvXgVXp)...
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3-SAT

Boolean formula:

» Boolean variables x1,...,Xp Wi )/L
> Literal: variable x; or negation X; )’“

> AND: A OR: v l\'JD/
> x1V(Xx5Ax7)A (X2 Vv (X6AX3))...
Conjunctive normal form (CNF): AND of ORs (clauses) >
—_ — - ——
> (xpvxovxg)A(xavx3)A(Xx1VvXgVXp)...
Y2 & melr %atO ar HuTO

Definition
3-SAT: Instance is 3CNF formula ¢ (every clause has < 3 literals). YES if there is assignment
where ¢ evaluates to True (satisfying assignment), NO otherwise.
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3-SAT

3-SAT is NP-complete. l




3-SAT

Theorem

3-SAT is NP-complete.

3-SAT in NP:

Jessica Sorrell

Lecture 24: NP-Completeness Il

November 20, 2025

6/17



3-SAT

Theorem
3-SAT is NP-complete. J

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.
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3-SAT

Theorem
3-SAT is NP-complete. J

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.
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3-SAT

Theorem
3-SAT is NP-complete. J

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.

» Don't need to show that A <, 3-SAT for arbitrary A € NP: already know that A <,
Circuit-SAT!
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3-SAT

Theorem
3-SAT is NP-complete. J

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.

» Don't need to show that A <, 3-SAT for arbitrary A € NP: already know that A <,
Circuit-SAT!

So start with circuit. Want to transform to 3-CNF formula.
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Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)

» AND/OR/NOT universal, but so is just NAND!
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Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)
» AND/OR/NOT universal, but so is just NAND!

e __{:D/ So given circuit C, first transform it into
/_D"' "> NAND-only circuit.
Input:

.,_l )/ /_)> ‘W > n “input wires”' X1,X2,...4Xp

> m NAND gates: g1,...,8m

% > g1 = NAND(Xl,X3),
N\— :‘> *CD’J_ g> = NAND(g1,xs), . ..
» WLOG, g, is the “output gate”
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires”' X1,X24...4Xp

» m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires”' X1,X24...4Xp
» m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where

it outputs 1.

Variables: y1,¥2, ..., YnsYnils Yn+2s - -« s Ynem (One for each wire)
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires”' X1,X24...4Xp

» m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2, ..., YnsYnils Yn+2s - -« s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(y;j, yx), create clauses:

I/
/—j y

ylc
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires”' X1,X24...4Xp

» m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires”' X1,X24...4Xp

» m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2, ..., YnsYnils Yn+2s - -« s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(y;j, yx), create clauses:

V. > yivyiVvyk (if yj=0and y, =0 then y; = 1)
] )O_}/; > yivy¥ivyk (if yj=1and y, =0 then y; = 1)

ylc
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires”' X1,X24...4Xp

» m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires”' X1,X24...4Xp

» m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2, ..., YnsYnils Yn+2s - -« s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(y;j, yx), create clauses:

% > YivYj VY (it yj=0and ye=0then y = 1)
— )O_y; > Yivyivyk (if yj=1and y, =0 then y; = 1)
— ] > YivyjVv ¥ (if yj=0and y =1 then y; = 1)
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires”' X1,X24...4Xp
» m NAND gates: g1,...,8m. Output gate gm
Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2, ..., YnsYnils Yn+2s - -« s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(y;j, yx), create clauses:

% > YivYj VY (it yj=0and ye=0then y = 1)
— )O_y; > Yivyivyk (if yj=1and y, =0 then y; = 1)
— ] > YivyjVv ¥ (if yj=0and y =1 then y; = 1)

Ve _
> YiVYiV Yk
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires”' X1,X24...4Xp

» m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2,....¥YnsYn+ls Yn+2s« - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(y;j, yx), create clauses:

7 > ¥i vy Vi (if yj=0and ye =0 then y
— )o_y" > ¥iv¥iVvyk (if yj=1and ye=0theny;
— > YivyjVv ¥ (if yj=0and yx =1 then y;

(

Ve
' > Yivyivyk (if yj=1and y, =1 then y;

I
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires”' X1,X24...4Xp

» m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2,....¥YnsYn+ls Yn+2s« - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(y;j, yx), create clauses:

7 > ¥i vy Vi (if yj=0and ye =0 then y
— )o_y" > ¥ivyiVvyk (if yj=1and y, =0 theny
— > YivyjV¥i (ifyj=0and ye =1 then y;

(

Ve
' > Yivyivyk (if yj=1and y, =1 then y;
Also add clause (Ym+n) (Want output gate to be 1)
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. J
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. J

Polytime: v
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. J

Polytime: v
Suppose C YES of Circuit-SAT

—— 3 setting x of input wires so g, =1

—= 3 assignment of y1,...¥Ym+n SO that all
clauses are satisfied:

> yi=x;ifi<n
> ¥i=8i-nifi>n

— f(C) YES of 3-SAT
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. J
Polytime: v
Suppose C YES of Circuit-SAT Suppose f(C) YES of 3-SAT
—— 3 setting x of input wires so g, =1 —= 3 assignment y to variables so that all
—= 3 assighment of y1,...Yms+n SO that all clauses satisfied
clauses are satisfied: — 3 setting x of input wires so gm = 1:
> yi=x;ifi<n > X;j = Yi
> yi=8iinifi>n > Qutput of gate gj = yi+n (by
— f(C) YES of 3-SAT construction)

> So gm =1 (since (Ym+n) is a clause)

—= C a YES instance of Circuit-SAT
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General Methodology to Prove Q NP-Complete

1. Show Q is in NP

> Can verify witness for YES
> Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem A. Reduce from A to Q:

> Given instance I of A, turn into f(I) of Q (in time polynomial in |/|)
> | YES of A if and only if (/) YES of Q
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General Methodology to Prove Q NP-Complete

1. Show Q is in NP

> Can verify witness for YES
> Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem A. Reduce from A to Q:

> Given instance I of A, turn into f(I) of Q (in time polynomial in |/|)
> | YES of A if and only if (/) YES of Q

Notes:
» Careful about direction of reduction!!!!

> Need to handle arbitrary instances of A, but can turn into very structured instances of Q

» Often easiest to prove NO direction via contrapositive, to turn into statement about YES:

» | YESof A = f(I) YES of Q
» f(I) YESof Q = I YESof A
» So proving “both directions”, but reduction only in one direction.
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CLIQUE

Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E
forall u,veS$S

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least
k, NO otherwise.
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Definition (CLIQUE)
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Theorem
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Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E
forall u,veS$S

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least
k, NO otherwise.

Theorem
CLIQUE is NP-complete. J

In NP:
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CLIQUE

Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E
for all u,ve S

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least
k, NO otherwise.

Theorem
CLIQUE is NP-complete. J

In NP:

> Witness: Sc V
> Verifier: Checks if S is a clique and |S| > k

> If (G, k) a YES instance: there is a clique S of size > k on which verifier returns YES
> If (G,k) a NO instance: S cannot be clique of size > k, so verifier always returns NO
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CLIQUE is NP-hard

Prove by reducing 3-SAT to CLIQUE
> For arbitrary A € NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE
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CLIQUE is NP-hard

Prove by reducing 3-SAT to CLIQUE
> For arbitrary A € NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE

Given 3-SAT formula F (with n variables and m clauses), set k = m and create graph
G=(V,E):
> For every clause of F, for every satisfying assignment to the clause, create vertex
» Add an edge between consistent assignments
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CLIQUE is NP-hard

Prove by reducing 3-SAT to CLIQUE
> For arbitrary A € NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE

Given 3-SAT formula F (with n variables and m clauses), set k = m and create graph
G=(V,E):
> For every clause of F, for every satisfying assignment to the clause, create vertex
» Add an edge between consistent assignments

Example: F = (x1VvxoVvixs)A(X3Vxa)A(X2VX3)

(”/V)U) (Ull,U) [0)|)l) ( l,”,ﬂ) Cl/(/ll} ((/llV/ ((,l)l)

(¢,%) N~

NS (0.0)
‘b. S ‘E‘&
( v, [) //\ " o, l)
( \) l) ) \ ( (l (/)
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3-SAT to CLIQUE reduction analysis
Polytime: v
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3-SAT to CLIQUE reduction analysis
Polytime: v
If F YES of 3-SAT:

» There is some satisfying assignment x
> For every clause, choose vertex corresponding to x. Let S be chosen vertices

> |S| = m =k, and clique since all consistent (since all from x)
— (G, k) YES of CLIQUE
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3-SAT to CLIQUE reduction analysis
Polytime: v
If F YES of 3-SAT:

» There is some satisfying assignment x

> For every clause, choose vertex corresponding to x. Let S be chosen vertices

> |S| = m =k, and clique since all consistent (since all from x)
— (G, k) YES of CLIQUE

If (G, k) YES of CLIQUE:
» There is some clique S of size k = m
» Must contain exactly one vertex from each clause (since clique of size m)

> Since clique, all assignments consistent == there is an assignment that satisfies all
clauses

—= F YES of 3-SAT
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INDEPENDENT SET

Definition: S ¢ V is an independent setin G = (V,E) if {u,v} ¢ E for all u,veS

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.
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Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
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Theorem
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INDEPENDENT SET

Definition: S ¢ V is an independent setin G = (V,E) if {u,v} ¢ E for all u,veS

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.

Theorem
INDEPENDENT SET is NP-complete. J

In NP:
> Witness is S ¢ V. Verifier checks that |S| > k and no edges in S

» If (G, k) a YES instance then such an S exists == verifier returns YES on it.

> If (G, k) a NO then verifier will return NO on every S.
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INDEPENDENT SET is NP-hard

Reduce from:
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

> Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} € E(H) if and only if {u,v} ¢ E(G)
> Instance (H, k) of INDEPENDENT SET
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

> Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} € E(H) if and only if {u,v} ¢ E(G)
> Instance (H, k) of INDEPENDENT SET

If (G, k) YES of CLIQUE:
— Clique S c V of G with |S| > k

—= S an independent set in H
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

> Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} € E(H) if and only if {u,v} ¢ E(G)
> Instance (H, k) of INDEPENDENT SET

If (G, k) YES of CLIQUE:
— Clique S c V of G with |S| > k

—= S an independent set in H

If (H,k) YES of INDEPENDENT SET:
—= Independent set S ¢ V in H with |S| > k

— S acliquein G
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VERTEX COVER
Definition: S ¢ V is a vertex cover of G = (V,E) if Sne+ & for all ec E

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO
otherwise.
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VERTEX COVER

Definition: S ¢ V is a vertex cover of G = (V,E) if Sne+ & for all ec E

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO
otherwise.

Theorem
VERTEX COVER is NP-complete J
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VERTEX COVER

Definition: S ¢ V is a vertex cover of G = (V,E) if Sne+ & for all ec E

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO
otherwise.

Theorem
VERTEX COVER is NP-complete J

In NP:
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VERTEX COVER

Definition: S ¢ V is a vertex coverof G=(V,E) if Sne+ @ forallecE

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO
otherwise.

Theorem
VERTEX COVER is NP-complete J

In NP:

> Witness is S € V. Verifier checks that |S| < k and every edge has at least one endpoint in
S

» If (G, k) a YES instance then such an S exists == verifier returns YES on it.
> If (G, k) a NO then verifier will return NO on every S.
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

» Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of
VERTEX COVER (where n=|V/|)
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

» Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of
VERTEX COVER (where n=|V/|)

If (G, k) a YES instance of INDEPENDENT SET:
—= G has an independent set S with |S|> k
== V \ S a vertex cover of G of size < n-k

—> (G,n-k) a YES instance of VERTEX COVER
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

» Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of
VERTEX COVER (where n=|V/|)

If (G, k) a YES instance of INDEPENDENT SET:
—= G has an independent set S with |S|> k
== V \ S a vertex cover of G of size < n-k

—> (G,n-k) a YES instance of VERTEX COVER

If (G,n- k) a YES instance of VERTEX COVER:
—= G has a vertex cover S of size at most n -k
—= V \ § an independent set of G of size at least k
— (G, k) a YES instance of INDEPENDENT SET
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