Lecture 24: NP-Completeness II

Michael Dinitz

November 20, 2025 601.433/633 Introduction to Algorithms

Introduction

Last time: Definition of **P**, **NP**, reductions, **NP**-completeness. Proof that Circuit-SAT is **NP**-complete.

Today: more NP-complete problems.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial time algorithm V(I,X) (called the *verifier*) such that

- 1. If I is a YES-instance of Q, then there is some X (usually called the witness, proof, or solution) with size polynomial in |I| so that V(I,X) = YES.
- 2. If I is a NO-instance of Q, then V(I, X) = NO for all X.

Reductions

Definition

A Many-one or Karp reduction from \boldsymbol{A} to \boldsymbol{B} is a function \boldsymbol{f} which takes arbitrary instances of \boldsymbol{A} and transforms them into instances of \boldsymbol{B} so that

- 1. If x is a YES-instance of A then f(x) is a YES-instance of B.
- 2. If x is a NO-instance of A then f(x) is a NO-instance B.
- 3. \mathbf{f} can be computed in polynomial time.

Definition

Problem Q is NP-hard if $Q' \leq_p Q$ for all problems Q' in NP. Problem Q is NP-complete if it is NP-hard and in NP.

Circuit-SAT

Definition

Circuit-SAT: Given a boolean circuit of AND, OR, and NOT gates, with a single output and no loops (some inputs might be hardwired), is there a way of setting the inputs so that the output of the circuit is 1?

Theorem

Circuit-SAT is NP-complete.

Boolean formula:

- Boolean variables x_1, \ldots, x_n
- Literal: variable x_i or negation $\bar{x_i}$
- ► AND: ∧ OR: ∨

Conjunctive normal form (CNF): AND of ORs (clauses)

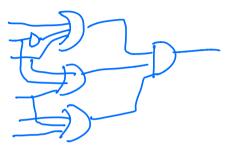
 $(x_1 \vee \bar{x_2} \vee \bar{x_4}) \wedge (x_2 \vee x_3) \wedge (x_1 \vee x_4 \vee \bar{x_6}) \dots$

Boolean formula:

- ▶ Boolean variables $x_1, ..., x_n$
- Literal: variable x_i or negation $\bar{x_i}$
- ► AND: ∧ OR: ∨

Conjunctive normal form (CNF): AND of ORs (clauses)

 $(x_1 \vee \bar{x_2} \vee \bar{x_4}) \wedge (x_2 \vee x_3) \wedge (x_1 \vee x_4 \vee \bar{x_6}) \dots$

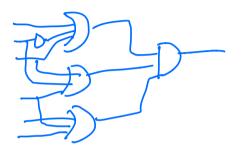


Boolean formula:

- ▶ Boolean variables $x_1, ..., x_n$
- Literal: variable x_i or negation $\bar{x_i}$
- ► AND: ∧ OR: ∨

Conjunctive normal form (CNF): AND of ORs (clauses)

 $(x_1 \vee \bar{x_2} \vee \bar{x_4}) \wedge (x_2 \vee x_3) \wedge (x_1 \vee x_4 \vee \bar{x_6}) \dots$



Definition

3-SAT: Instance is 3CNF formula ϕ (every clause has \leq 3 literals). YES if there is assignment where ϕ evaluates to True (satisfying assignment), NO otherwise.

Theorem

3-SAT is **NP**-complete.

Theorem

3-SAT is **NP**-complete.

3-SAT in *NP*:

Theorem

3-SAT is **NP**-complete.

3-SAT in **NP**: witness is assignment, verifier checks that formula evaluates to True on assignment.

Theorem

3-SAT is **NP**-complete.

3-SAT in **NP**: witness is assignment, verifier checks that formula evaluates to True on assignment.

3-SAT is **NP**-hard:

Theorem

3-SAT is **NP**-complete.

3-SAT in **NP**: witness is assignment, verifier checks that formula evaluates to True on assignment.

3-SAT is **NP**-hard: Show Circuit-SAT $\leq_{\mathbf{p}}$ 3-SAT.

Theorem

3-SAT is **NP**-complete.

3-SAT in **NP**: witness is assignment, verifier checks that formula evaluates to True on assignment.

3-SAT is **NP**-hard: Show Circuit-SAT $\leq_{\mathbf{p}}$ 3-SAT.

▶ Don't need to show that $\mathbf{A} \leq_{\mathbf{p}} 3$ -SAT for arbitrary $\mathbf{A} \in \mathbf{NP}$: already know that $\mathbf{A} \leq_{\mathbf{p}}$ Circuit-SAT!

Michael Dinitz

Theorem

3-SAT is **NP**-complete.

3-SAT in **NP**: witness is assignment, verifier checks that formula evaluates to True on assignment.

3-SAT is **NP**-hard: Show Circuit-SAT $\leq_{\mathbf{p}}$ 3-SAT.

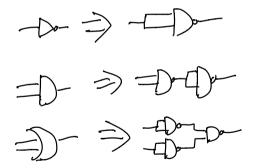
▶ Don't need to show that $\mathbf{A} \leq_{\mathbf{p}} 3$ -SAT for arbitrary $\mathbf{A} \in \mathbf{NP}$: already know that $\mathbf{A} \leq_{\mathbf{p}}$ Circuit-SAT!

So start with circuit. Want to transform to 3-CNF formula.

Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)

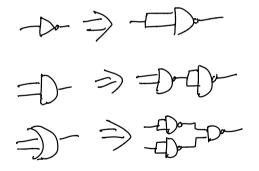
▶ AND/OR/NOT universal, but so is just NAND!



Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)

▶ AND/OR/NOT universal, but so is just NAND!



So given circuit \boldsymbol{C} , first transform it into NAND-only circuit.

Input:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m
 - $g_1 = NAND(x_1, x_3),$ $g_2 = NAND(g_1, x_4), ...$
- ▶ WLOG, **g**_m is the "output gate"

So given as input a circuit C:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- **m** NAND gates: g_1, \ldots, g_m . Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.

So given as input a circuit C:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- **m** NAND gates: g_1, \ldots, g_m . Output gate g_m

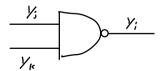
Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \dots, y_n, y_{n+1}, y_{n+2}, \dots, y_{n+m}$ (one for each wire)

So given as input a circuit C:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- **m** NAND gates: g_1, \ldots, g_m . Output gate g_m

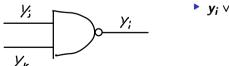
Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.



So given as input a circuit **C**:

- \triangleright **n** "input wires" x_1, x_2, \ldots, x_n
- ▶ m NAND gates: g_1, \ldots, g_m . Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.

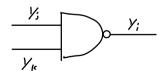


So given as input a circuit C:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- **m** NAND gates: g_1, \ldots, g_m . Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \dots, y_n, y_{n+1}, y_{n+2}, \dots, y_{n+m}$ (one for each wire) Clauses: For every NAND gate $y_i = NAND(y_i, y_k)$, create clauses:

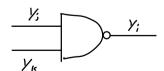


 \triangleright $y_i \lor y_i \lor y_k$ (if $y_i = 0$ and $y_k = 0$ then $y_i = 1$)

So given as input a circuit C:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- **m** NAND gates: g_1, \ldots, g_m . Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.

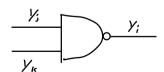


- \triangleright $y_i \lor y_i \lor y_k$ (if $y_i = 0$ and $y_k = 0$ then $y_i = 1$)
- $y_i \vee \bar{y}_j \vee y_k$

So given as input a circuit C:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- **m** NAND gates: g_1, \ldots, g_m . Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.

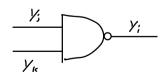


- \triangleright $y_i \lor y_i \lor y_k$ (if $y_i = 0$ and $y_k = 0$ then $y_i = 1$)
- $y_i \vee \overline{y}_i \vee y_k$ (if $y_i = 1$ and $y_k = 0$ then $y_i = 1$)

So given as input a circuit C:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- **m** NAND gates: g_1, \ldots, g_m . Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.

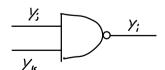


- \triangleright $y_i \lor y_i \lor y_k$ (if $y_i = 0$ and $y_k = 0$ then $y_i = 1$)
- \triangleright $y_i \lor \overline{y}_i \lor y_k$ (if $y_i = 1$ and $y_k = 0$ then $y_i = 1$)
- $y_i \vee y_i \vee \overline{y}_k$

So given as input a circuit C:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- **m** NAND gates: g_1, \ldots, g_m . Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.

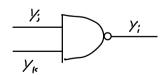


- \triangleright $y_i \lor y_i \lor y_k$ (if $y_i = 0$ and $y_k = 0$ then $y_i = 1$)
- $ightharpoonup y_i \lor \overline{y}_i \lor y_k \text{ (if } y_i = 1 \text{ and } y_k = 0 \text{ then } y_i = 1)$
- $y_i \vee y_i \vee \overline{y}_k$ (if $y_i = 0$ and $y_k = 1$ then $y_i = 1$)

So given as input a circuit C:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- **m** NAND gates: g_1, \ldots, g_m . Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.

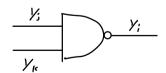


- $\mathbf{v}_i \vee \mathbf{v}_i \vee \mathbf{v}_k$ (if $\mathbf{v}_i = \mathbf{0}$ and $\mathbf{v}_k = \mathbf{0}$ then $\mathbf{v}_i = \mathbf{1}$)
- \triangleright $y_i \lor \overline{y}_i \lor y_k$ (if $y_i = 1$ and $y_k = 0$ then $y_i = 1$)
- $y_i \vee y_i \vee \overline{y}_k$ (if $y_i = 0$ and $y_k = 1$ then $y_i = 1$)
- $ightharpoonup \bar{y}_i \vee \bar{y}_j \vee \bar{y}_k$

So given as input a circuit *C*:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- **m** NAND gates: g_1, \ldots, g_m . Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.



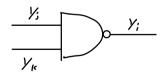
- $\mathbf{v}_i \vee \mathbf{v}_i \vee \mathbf{v}_k$ (if $\mathbf{v}_i = \mathbf{0}$ and $\mathbf{v}_k = \mathbf{0}$ then $\mathbf{v}_i = \mathbf{1}$)
- \triangleright $\mathbf{y}_i \vee \overline{\mathbf{y}}_i \vee \mathbf{y}_k$ (if $\mathbf{y}_i = \mathbf{1}$ and $\mathbf{y}_k = \mathbf{0}$ then $\mathbf{y}_i = \mathbf{1}$)
- $y_i \vee y_i \vee \overline{y}_k$ (if $y_i = 0$ and $y_k = 1$ then $y_i = 1$)
- $ightharpoonup \bar{y}_i \vee \bar{y}_i \vee \bar{y}_k$ (if $y_i = 1$ and $y_k = 1$ then $y_i = 0$)

So given as input a circuit *C*:

- ightharpoonup n "input wires" x_1, x_2, \ldots, x_n
- **m** NAND gates: g_1, \ldots, g_m . Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \dots, y_n, y_{n+1}, y_{n+2}, \dots, y_{n+m}$ (one for each wire) **Clauses:** For every NAND gate $y_i = NAND(y_i, y_k)$, create clauses:



- \triangleright $y_i \lor y_i \lor y_k$ (if $y_i = 0$ and $y_k = 0$ then $y_i = 1$)
- $ightharpoonup y_i \lor \bar{y}_i \lor y_k \text{ (if } y_i = 1 \text{ and } y_k = 0 \text{ then } y_i = 1)$
- $ightharpoonup y_i \lor y_j \lor \overline{y}_k \text{ (if } y_j = 0 \text{ and } y_k = 1 \text{ then } y_i = 1)$
- $ightharpoonup \bar{y}_i \vee \bar{y}_i \vee \bar{y}_k$ (if $y_i = 1$ and $y_k = 1$ then $y_i = 0$)

Also add clause (y_{m+n}) (want output gate to be 1)

Theorem

This is a many-one reduction from Circuit-SAT to 3-SAT.

Theorem

This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: ✓

Theorem

This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: ✓

Suppose C YES of Circuit-SAT

- \implies 3 setting **x** of input wires so $g_m = 1$
- \implies 3 assignment of $y_1, \dots y_{m+n}$ so that all clauses are satisfied:
 - $y_i = x_i$ if $i \le n$
 - $y_i = g_{i-n} \text{ if } i > n$
- \implies f(C) YES of 3-SAT

Theorem

This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: ✓

Suppose C YES of Circuit-SAT

$$\implies$$
 3 setting **x** of input wires so $g_m = 1$

 \implies 3 assignment of $y_1, \dots y_{m+n}$ so that all clauses are satisfied:

$$y_i = x_i$$
 if $i \le n$

$$y_i = g_{i-n} \text{ if } i > n$$

$$\implies f(C)$$
 YES of 3-SAT

Suppose f(C) YES of 3-SAT

- \implies 3 assignment y to variables so that all clauses satisfied
- \implies 3 setting x of input wires so $g_m = 1$:
 - $x_i = y_i$
 - Output of gate $g_i = y_{i+n}$ (by construction)
 - ▶ So $g_m = 1$ (since (y_{m+n}) is a clause)
- → C a YES instance of Circuit-SAT

General Methodology to Prove Q NP-Complete

- 1. Show Q is in NP
 - Can verify witness for YES
 - ▶ Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)
- 2. Find some **NP**-hard problem **A**. Reduce **from A** to **Q**:
 - Given instance I of A, turn into f(I) of Q (in time polynomial in |I|)
 - ▶ I YES of A if and only if f(I) YES of Q

General Methodology to Prove Q NP-Complete

- 1. Show Q is in NP
 - Can verify witness for YES
 - Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)
- 2. Find some **NP**-hard problem **A**. Reduce **from A** to **Q**:
 - Given instance I of A, turn into f(I) of Q (in time polynomial in |I|)
 - ▶ I YES of A if and only if f(I) YES of Q

Notes:

- Careful about direction of reduction!!!!
- ightharpoonup Need to handle arbitrary instances of $m{A}$, but can turn into very structured instances of $m{Q}$
- Often easiest to prove NO direction via contrapositive, to turn into statement about YES:
 - I YES of $A \implies f(I)$ YES of Q
 - f(I) YES of $Q \implies I$ YES of A
 - ▶ So proving "both directions", but reduction only in one direction.

CLIQUE

Definition: A *clique* in an undirected graph G = (V, E) is a set $S \subseteq V$ such that $\{u, v\} \in E$ for all $u, v \in S$

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least k. NO otherwise.

CLIQUE

Definition: A *clique* in an undirected graph G = (V, E) is a set $S \subseteq V$ such that $\{u, v\} \in E$ for all $u, v \in S$

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least k, NO otherwise.

Theorem

CLIQUE is **NP**-complete.

CLIQUE

Definition: A *clique* in an undirected graph G = (V, E) is a set $S \subseteq V$ such that $\{u, v\} \in E$ for all $u, v \in S$

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least k. NO otherwise.

Theorem

CLIQUE is **NP**-complete.

CLIQUE

Definition: A *clique* in an undirected graph G = (V, E) is a set $S \subseteq V$ such that $\{u, v\} \in E$ for all $u, v \in S$

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least k, NO otherwise.

Theorem

CLIQUE is **NP**-complete.

- Witness: S ⊆ V
- ▶ Verifier: Checks if S is a clique and $|S| \ge k$
 - ▶ If (G, k) a YES instance: there is a clique S of size $\geq k$ on which verifier returns YES
 - If (G, k) a NO instance: S cannot be clique of size $\geq k$, so verifier always returns NO

CLIQUE is **NP**-hard

Prove by reducing 3-SAT to CLIQUE

▶ For arbitrary $\mathbf{A} \in \mathbf{NP}$, would have $\mathbf{A} \leq_{\mathbf{p}} \text{Circuit-SAT} \leq_{\mathbf{p}} 3\text{-SAT} \leq_{\mathbf{p}} \text{CLIQUE}$

CLIQUE is **NP**-hard

Prove by reducing 3-SAT to CLIQUE

▶ For arbitrary $\mathbf{A} \in \mathbf{NP}$, would have $\mathbf{A} \leq_{\mathbf{p}} \text{Circuit-SAT} \leq_{\mathbf{p}} 3\text{-SAT} \leq_{\mathbf{p}} \text{CLIQUE}$

Given 3-SAT formula F (with n variables and m clauses), set k = m and create graph G = (V, E):

- For every clause of **F**, for every satisfying assignment to the clause, create vertex
- Add an edge between consistent assignments

CLIQUE is **NP**-hard

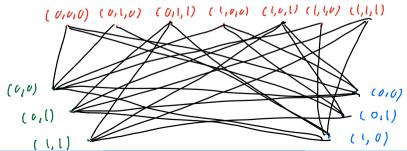
Prove by reducing 3-SAT to CLIQUE

▶ For arbitrary $\mathbf{A} \in \mathbf{NP}$, would have $\mathbf{A} \leq_{\mathbf{p}} \text{Circuit-SAT} \leq_{\mathbf{p}} 3\text{-SAT} \leq_{\mathbf{p}} \text{CLIQUE}$

Given 3-SAT formula F (with n variables and m clauses), set k = m and create graph G = (V, E):

- ▶ For every clause of **F**, for every satisfying assignment to the clause, create vertex
- Add an edge between consistent assignments

Example: $F = (x_1 \lor x_2 \lor \overline{x}_4) \land (\overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor \overline{x}_3)$



Michael Dinitz Lecture 24: NP-Completeness II

3-SAT to CLIQUE reduction analysis

Polytime: ✓

13 / 17

3-SAT to CLIQUE reduction analysis

Polytime: ✓

If **F** YES of 3-SAT:

- ightharpoonup There is some satisfying assignment x
- \triangleright For every clause, choose vertex corresponding to x. Let S be chosen vertices
- ▶ |S| = m = k, and clique since all consistent (since all from x)

 \implies (G, k) YES of CLIQUE

3-SAT to CLIQUE reduction analysis

Polytime: ✓

If **F** YES of 3-SAT:

- ▶ There is some satisfying assignment **x**
- \triangleright For every clause, choose vertex corresponding to x. Let S be chosen vertices
- ▶ |S| = m = k, and clique since all consistent (since all from x)
- \implies (G, k) YES of CLIQUE

If (G, k) YES of CLIQUE:

- ▶ There is some clique \mathbf{S} of size $\mathbf{k} = \mathbf{m}$
- ▶ Must contain exactly one vertex from each clause (since clique of size *m*)
- ▶ Since clique, all assignments consistent ⇒ there is an assignment that satisfies all clauses
- ⇒ **F** YES of 3-SAT

Definition: $S \subseteq V$ is an *independent set* in G = (V, E) if $\{u, v\} \notin E$ for all $u, v \in S$

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size $\geq k$, NO otherwise.

Definition: $S \subseteq V$ is an *independent set* in G = (V, E) if $\{u, v\} \notin E$ for all $u, v \in S$

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size $\geq k$, NO otherwise.

Theorem

INDEPENDENT SET is **NP**-complete.

Definition: $S \subseteq V$ is an *independent set* in G = (V, E) if $\{u, v\} \notin E$ for all $u, v \in S$

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size $\geq k$, NO otherwise.

Theorem

INDEPENDENT SET is **NP**-complete.

Definition: $S \subseteq V$ is an *independent set* in G = (V, E) if $\{u, v\} \notin E$ for all $u, v \in S$

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size $\geq k$, NO otherwise.

Theorem

INDEPENDENT SET is **NP**-complete.

- ▶ Witness is $S \subseteq V$. Verifier checks that $|S| \ge k$ and no edges in S
- If (G, k) a YES instance then such an S exists \implies verifier returns YES on it.
- If (G, k) a NO then verifier will return NO on every S.

Reduce from:

Reduce from: CLique

Reduce from: CLIQUE

- Given instance (G, k) of CLIQUE, create "complement graph" H: same vertex set, with $\{u, v\} \in E(H)$ if and only if $\{u, v\} \notin E(G)$
- ▶ Instance (H, k) of INDEPENDENT SET

Reduce from: CLIQUE

- Given instance (G, k) of CLIQUE, create "complement graph" H: same vertex set, with $\{u, v\} \in E(H)$ if and only if $\{u, v\} \notin E(G)$
- ▶ Instance (*H*, *k*) of INDEPENDENT SET

If (G, k) YES of CLIQUE:

- \implies Clique $S \subseteq V$ of G with $|S| \ge k$
- \implies **S** an independent set in **H**

Reduce from: CLIQUE

- Given instance (G, k) of CLIQUE, create "complement graph" H: same vertex set, with $\{u, v\} \in E(H)$ if and only if $\{u, v\} \notin E(G)$
- ▶ Instance (H, k) of INDEPENDENT SET

If (G, k) YES of CLIQUE:

- \implies Clique $S \subseteq V$ of G with $|S| \ge k$
- \implies **S** an independent set in **H**

If (H, k) YES of INDEPENDENT SET:

- \implies Independent set $S \subseteq V$ in H with $|S| \ge k$
- \implies **S** a clique in **G**

VERTEX COVER

Definition: $S \subseteq V$ is a *vertex cover* of G = (V, E) if $S \cap e \neq \emptyset$ for all $e \in E$

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size $\leq k$, NO otherwise.

Vertex Cover

Definition: $S \subseteq V$ is a *vertex cover* of G = (V, E) if $S \cap e \neq \emptyset$ for all $e \in E$

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size $\leq k$, NO otherwise.

Theorem

VERTEX COVER is **NP**-complete

Vertex Cover

Definition: $S \subseteq V$ is a *vertex cover* of G = (V, E) if $S \cap e \neq \emptyset$ for all $e \in E$

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size $\leq k$, NO otherwise.

Theorem

VERTEX COVER is **NP**-complete

Vertex Cover

Definition: $S \subseteq V$ is a *vertex cover* of G = (V, E) if $S \cap e \neq \emptyset$ for all $e \in E$

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size $\leq k$, NO otherwise.

Theorem

Vertex Cover is **NP**-complete

- ▶ Witness is $S \subseteq V$. Verifier checks that $|S| \le k$ and every edge has at least one endpoint in S
- ▶ If (G, k) a YES instance then such an S exists \implies verifier returns YES on it.
- If (G, k) a NO then verifier will return NO on every S.

VERTEX COVER is **NP**-hard

Reduce from Independent Set

▶ Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of VERTEX COVER (where n = |V|)

VERTEX COVER is **NP**-hard

Reduce from Independent Set

▶ Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of VERTEX COVER (where n = |V|)

If (G, k) a YES instance of INDEPENDENT SET:

- \implies **G** has an independent set **S** with $|S| \ge k$
- \implies $V \setminus S$ a vertex cover of G of size $\leq n k$
- \implies (G, n k) a YES instance of VERTEX COVER

VERTEX COVER is **NP**-hard

Reduce from Independent Set

▶ Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of VERTEX COVER (where n = |V|)

If (G, k) a YES instance of INDEPENDENT SET:

- \implies **G** has an independent set **S** with $|S| \ge k$
- \implies $V \setminus S$ a vertex cover of G of size $\leq n k$
- \implies (G, n k) a YES instance of VERTEX COVER

If (G, n - k) a YES instance of VERTEX COVER:

- \implies **G** has a vertex cover **S** of size at most n k
- \implies $V \setminus S$ an independent set of G of size at least k
- \implies (G, k) a YES instance of INDEPENDENT SET