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Introduction

Last time: Definition of P, NP, reductions, NP-completeness. Proof that Circuit-SAT is
NP-complete.

Today: more NP-complete problems.

Definition
A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V (I, X) (called the verifier) such that

1. If I'is a YES-instance of Q, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V(/, X) = YES.
2. If I is a NO-instance of @, then V (I, X) = NO for all X.
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Reductions

Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that

1. If x is a YES-instance of A then f(x) is a YES-instance of B.

2. If x is a NO-instance of A then f(x) is a NO-instance B.

3. f can be computed in polynomial time.

Definition

Problem @Q is NP-hard if Q" <p Q for all problems Q" in NP. Problem Q is NP-complete if
it is NP-hard and in NP.

Michael Dinitz Lecture 24: NP-Completeness Il November 20, 2025 3/17



Circuit-SAT

Definition
Circuit-SAT: Given a boolean circuit of AND, OR, and NOT gates, with a single output and
no loops (some inputs might be hardwired), is there a way of setting the inputs so that the

output of the circuit is 17
Theorem
Circuit-SAT is NP-complete.
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3-SAT

Boolean formula:
» Boolean variables xj,...,xp
» Literal: variable x; or negation X;
» AND: A OR: v
» x3 V(X5 Ax7)A (X V(X6AX3)) ...
Conjunctive normal form (CNF): AND of ORs (clauses)

» (xpvxavxg)A(xavx3)A(X1VXgV Xp)...
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3-SAT

Boolean formula:
» Boolean variables xj,...,xp /L
» Literal: variable x; or negation X;
» AND: A OR:v D//
» x1V (x5 Ax7)A (X V(X6 AX3))...

Conjunctive normal form (CNF): AND of ORs (clauses) >

» (xpvxavxg)A(xavx3)A(X1VXgV Xp)...
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3-SAT

Boolean formula:
» Boolean variables xj,...,xp /L
» Literal: variable x; or negation X;
> AND: A OR:v )/'/
» x1V (x5 Ax7)A (X V(X6 AX3))...
Conjunctive normal form (CNF): AND of ORs (clauses) >
» (xpvxavxg)A(xavx3)A(X1VXgV Xp)... —
Definition
3-SAT: Instance is 3CNF formula ¢ (every clause has < 3 literals). YES if there is assignment
where ¢ evaluates to True (satisfying assignment), NO otherwise.
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3-SAT

Theorem
3-SAT is NP-complete. J
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3-SAT

Theorem

3-SAT is NP-complete.

3-SAT in NP:
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3-SAT

Theorem
3-SAT is NP-complete. J

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.
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3-SAT

Theorem
3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard:

Michael Dinitz Lecture 24: NP-Completeness |l November 20, 2025 6/17



3-SAT

Theorem
3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.
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3-SAT

Theorem
3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.

» Don't need to show that A <, 3-SAT for arbitrary A € NP: already know that A <,
Circuit-SAT!
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3-SAT

Theorem
3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.
3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.

» Don't need to show that A <, 3-SAT for arbitrary A € NP: already know that A <,
Circuit-SAT!

So start with circuit. Want to transform to 3-CNF formula.
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Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)
» AND/OR/NOT universal, but so is just NAND!

/-{>v'f«>’“‘:D”/

- > Fre-
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Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)
» AND/OR/NOT universal, but so is just NAND!

- ~{:I>/ So given circuit C, first transform it into
/-D" ‘—> NAND-only circuit.
Input:

/—I >/ //D ‘:——D_CD’/ > n “input wires" X1,X2,...,Xp

» m NAND gates: g1,...,8m
> g1 = NAND(X],X3),
/3)/ :> W & = NAND(g1, %), . .

» WLOG, g, is the “output gate”
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires” X1,X2,...,Xn

» m NAND gates: gi,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires” X1,X2,...,Xn
» m NAND gates: gi,...,8m. Output gate gm
Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1, Y2, ¥ns Yn+ls Yn+2s - -+ s Yn+m (One for each wire)
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires” X1,X2,...,Xn

» m NAND gates: gi,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1, Y2, ¥ns Yn+ls Yn+2s - -+ s Yn+m (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yx), create clauses:

%
2 ): Vi

yk
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires” X1,X2,...,Xn

» m NAND gates: gi,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires” X1,X2,...,Xn

» m NAND gates: gi,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1, Y2, ¥ns Yn+ls Yn+2s - -+ s Yn+m (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yx), create clauses:

V. i y » yivyjVvyk (if yj=0and y, =0 then y; = 1)

yk
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires” X1,X2,...,Xn

» m NAND gates: gi,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.
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Vi » yivyjVvyk (if yj=0and y, =0 then y; = 1)
)oi > iV} ¥
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires” X1,X2,...,Xn

» m NAND gates: gi,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1, Y2, ¥ns Yn+ls Yn+2s - -+ s Yn+m (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yx), create clauses:

Vi » yivyjVvyk (if yj=0and y, =0 then y; = 1)
>L » yiv¥ivyk (if yj=1and y, =0 then y; = 1)

yk
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires” X1,X2,...,Xn

» m NAND gates: gi,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.
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So given as input a circuit C:
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires” X1,X2,...,Xn
» m NAND gates: gi,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2,...;Yns Yn+1s Yn+2s -+ - » Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yx), create clauses:

V. > yivyjVvyk (if yj=0and y, =0 then y; = 1)
>L » yiv¥ivyk (if yj=1and y, =0 then y; = 1)
> Yivyj Vi (if yj=0and y, =1 then y; = 1)

yk - - -
> YiVYjV Yk
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires” X1,X2,...,Xn
» m NAND gates: gi,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2,...;Yns Yn+1s Yn+2s -+ - » Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yx), create clauses:

Vi > yivyjVvyk (if yj=0and y, =0 then y; =
>L > yiv¥ivyk (if yj=1and y, =0 then y;
Y > yivyj Vi (if yj=0and y, =1 then y;
lc
(

» YivyjVvyi (if yj=1and y, =1 then y;

I}
[ S e ==
N N N N
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires” X1,X2,...,Xn

» m NAND gates: gi,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2,...;Yns Yn+1s Yn+2s -+ - » Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yx), create clauses:

Vi > yivyjVvyk (if yj=0and y, =0 then y; =
DOL ’y,-vf/jvyk(ifyj=landyk=0theny,-
> YiVYiV ¥k (ifyj=0and Yk =1 then y;

Ve
I > ¥iv¥i vy (if yj=1and y, =1 then y;
Also add clause (¥m+n) (want output gate to be 1)
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. J
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. J

Polytime: v
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: v
Suppose C YES of Circuit-SAT

== 3 setting x of input wires so g, =1

== 3 assignment of y1,...Ym+n SO that all
clauses are satisfied:
> yi=x;ifi<n
> yi=gi-nifi>n
= f(C) YES of 3-SAT
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: v
Suppose C YES of Circuit-SAT Suppose f(C) YES of 3-SAT
== 3 setting x of input wires so g, =1 == 3 assignment y to variables so that all
= 3 assignment of y1,...Ymn so that all clauses satisfied
clauses are satisfied: = 3 setting x of input wires so gm = 1:
> yi=x;ifi<n > X;=y;
> yi=gi-nifi>n > Output of gate g; = ¥i+n (by
— f(C) YES of 3-SAT construction)

> So gm =1 (since (¥me+n) is a clause)
== C a YES instance of Circuit-SAT
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General Methodology to Prove @ NP-Complete

1. Show Q is in NP

> Can verify witness for YES
» Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem A. Reduce from A to Q:

» Given instance I of A, turn into f(I) of Q (in time polynomial in |/|)
> I YES of A if and only if £(I) YES of Q
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General Methodology to Prove @ NP-Complete

1. Show Q is in NP

> Can verify witness for YES
» Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem A. Reduce from A to Q:

» Given instance I of A, turn into f(I) of Q (in time polynomial in |/|)
> I YES of A if and only if £(I) YES of Q

Notes:

» Careful about direction of reduction!!!!

» Need to handle arbitrary instances of A, but can turn into very structured instances of @
» Often easiest to prove NO direction via contrapositive, to turn into statement about YES:

» | YESof A = f(I) YES of Q
» f(I) YESof Q = I YESof A
> So proving "both directions”, but reduction only in one direction.
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CLIQUE

Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E
for all u,veS

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least
k, NO otherwise.
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CLIQUE

Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E
for all u,veS

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least
k, NO otherwise.

Theorem
CLIQUE is NP-complete.
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CLIQUE

Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E
for all u,veS

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least
k, NO otherwise.

Theorem
CLIQUE is NP-complete.

In NP:
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CLIQUE

Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E
for all u,veS

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least
k, NO otherwise.

Theorem
CLIQUE is NP-complete.

In NP:
» Witness: Sc V
» Verifier: Checks if S is a clique and |S| > k

» If (G, k) a YES instance: there is a clique S of size > k on which verifier returns YES
» If (G, k) a NO instance: S cannot be clique of size > k, so verifier always returns NO
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CLIQUE is NP-hard

Prove by reducing 3-SAT to CLIQUE
» For arbitrary A€ NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE

Michael Dinitz Lecture 24: NP-Completeness |l November 20, 2025 12/17



CLIQUE is NP-hard
Prove by reducing 3-SAT to CLIQUE
» For arbitrary A€ NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE
Given 3-SAT formula F (with n variables and m clauses), set k = m and create graph
G=(V,E):
» For every clause of F, for every satisfying assignment to the clause, create vertex
» Add an edge between consistent assignments
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CLIQUE is NP-hard

Prove by reducing 3-SAT to CLIQUE
» For arbitrary A€ NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE

Given 3-SAT formula F (with n variables and m clauses), set k = m and create graph
G=(V,E):
» For every clause of F, for every satisfying assignment to the clause, create vertex
» Add an edge between consistent assignments

Example: F = (x3VxoVvXg)A(X3Vxg)A(X2VX3)

() Coto) Col) CLae) CLol) (lbe) 4Ny

(¢,°)
(01[)
) ¢4 0)
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3-SAT to CLIQUE reduction analysis
Polytime: v
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3-SAT to CLIQUE reduction analysis
Polytime: v
If F YES of 3-SAT:
» There is some satisfying assignment x
» For every clause, choose vertex corresponding to x. Let S be chosen vertices

» |S| = m = k, and clique since all consistent (since all from x)
== (G, k) YES of CLIQUE
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3-SAT to CLIQUE reduction analysis
Polytime: v
If F YES of 3-SAT:

» There is some satisfying assignment x

» For every clause, choose vertex corresponding to x. Let S be chosen vertices

» |S| = m = k, and clique since all consistent (since all from x)
== (G, k) YES of CLIQUE

If (G, k) YES of CLIQUE:
» There is some clique S of size k =m
» Must contain exactly one vertex from each clause (since clique of size m)

» Since clique, all assignments consistent == there is an assignment that satisfies all
clauses

== F YES of 3-SAT
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INDEPENDENT SET

Definition: S ¢ V is an independent setin G = (V,E) if {u,v} ¢ E for all u,veS

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.
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INDEPENDENT SET

Definition: S ¢ V is an independent setin G = (V,E) if {u,v} ¢ E for all u,ve S

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.

v

Theorem
INDEPENDENT SET is NP-complete.
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Definition: S ¢ V is an independent setin G = (V,E) if {u,v} ¢ E for all u,ve S

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.
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Theorem
INDEPENDENT SET is NP-complete.
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INDEPENDENT SET

Definition: S ¢ V is an independent setin G = (V,E) if {u,v} ¢ E for all u,veS

Definition (INDEPENDENT SET)
Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.

Theorem
INDEPENDENT SET is NP-complete.

In NP:
» Witness is S € V. Verifier checks that |S| > k and no edges in S
» If (G, k) a YES instance then such an S exists == verifier returns YES on it.
» If (G, k) a NO then verifier will return NO on every S.
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INDEPENDENT SET is NP-hard

Reduce from:
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

» Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} e E(H) if and only if {u,v} ¢ E(G)
» Instance (H, k) of INDEPENDENT SET
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

» Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} e E(H) if and only if {u,v} ¢ E(G)
» Instance (H, k) of INDEPENDENT SET

If (G, k) YES of CLIQUE:
= Clique S ¢ V of G with |§| > k

== S an independent set in H
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

» Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} e E(H) if and only if {u,v} ¢ E(G)
» Instance (H, k) of INDEPENDENT SET

If (G, k) YES of CLIQUE:
= Clique S ¢ V of G with |§| > k

== S an independent set in H

If (H, k) YES of INDEPENDENT SET:
== Independent set S ¢ V in H with |S| > k

= S acliquein G
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VERTEX COVER
Definition: S c V is a vertex cover of G = (V,E) if Sne+ @ forallee E

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO
otherwise.
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VERTEX COVER

Definition: S ¢ V is a vertex coverof G = (V,E) if Sne+ @ forallee E

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO
otherwise. )

Theorem
VERTEX COVER is NP-complete

In NP:
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VERTEX COVER
Definition: S c V is a vertex cover of G = (V,E) if Sne+ @ forallee E

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO
otherwise.

Theorem
VERTEX COVER is NP-complete

In NP:

» Witness is S ¢ V. Verifier checks that |S| < k and every edge has at least one endpoint in
)

» If (G, k) a YES instance then such an S exists == verifier returns YES on it.
» If (G, k) a NO then verifier will return NO on every S.
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

» Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of
VERTEX COVER (where n =|V/|)
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

» Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of
VERTEX COVER (where n =|V/|)

If (G, k) a YES instance of INDEPENDENT SET:
== G has an independent set S with |S| > k
== V \ S a vertex cover of G of size < n-k

= (G,n- k) a YES instance of VERTEX COVER
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

» Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of
VERTEX COVER (where n =|V/|)

If (G, k) a YES instance of INDEPENDENT SET:
== G has an independent set S with |S| > k
== V \ S a vertex cover of G of size < n-k

= (G,n- k) a YES instance of VERTEX COVER

If (G,n-k) a YES instance of VERTEX COVER:
== G has a vertex cover S of size at most n- k
== V \ S an independent set of G of size at least k
== (G, k) a YES instance of INDEPENDENT SET
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