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Introduction

Machine Learning from the point of view of theoretical computer science

� Proofs about performance

� Minimize assumptions

� Not going to talk about useful in practice, etc.

Today:

� Online Learning
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Online Learning
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Online Learning

Learning over time, not just one-shot

� See data one piece at a time

� Try to use historical data to make decisions as we go

� We don’t assume data comes from a distribution. Could be adversarially chosen!
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Example: Learning From Expert Advice

Intuition: stock market

� N experts� Every day:� Every expert predicts up/down� Algorithm makes prediction� Find out what happened

What can/should we do? Can we always make an accurate prediction?

� No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

� Don’t try to learn the market: learn which expert knows the market best
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

� Majority vote of remaining experts

� Remove incorrect experts

Best expert makes 0 mistakes

We make: O(logN) mistakes

� Each mistake decreases # experts by 1�2
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General case: no perfect expert

Weighted Majority

� Initialize all experts to weight 1

� Predict based on weighted majority vote

� Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1�2)m
� Best expert has weight at least (1�2)m

W ≤ N(3�4)M
� Every time we make a mistake, at least

1�2 the total weight gets decreased by
1�2, so left with at most 3�4 of the
original total weight

�⇒ (1�2)m ≤W ≤ N(3�4)M �⇒ (4�3)M ≤ N2m

�⇒ M ≤ log4�3(N2m) = m + logN

log(4�3) ≈ 2.4(m + logN)

Michael Dinitz Lecture 25: Online Learning December 2, 2025 7 / 15



General case: no perfect expert

Weighted Majority

� Initialize all experts to weight 1

� Predict based on weighted majority vote

� Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1�2)m
� Best expert has weight at least (1�2)m

W ≤ N(3�4)M
� Every time we make a mistake, at least

1�2 the total weight gets decreased by
1�2, so left with at most 3�4 of the
original total weight

�⇒ (1�2)m ≤W ≤ N(3�4)M �⇒ (4�3)M ≤ N2m

�⇒ M ≤ log4�3(N2m) = m + logN

log(4�3) ≈ 2.4(m + logN)

Michael Dinitz Lecture 25: Online Learning December 2, 2025 7 / 15



General case: no perfect expert

Weighted Majority

� Initialize all experts to weight 1

� Predict based on weighted majority vote

� Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1�2)m
� Best expert has weight at least (1�2)m

W ≤ N(3�4)M
� Every time we make a mistake, at least

1�2 the total weight gets decreased by
1�2, so left with at most 3�4 of the
original total weight

�⇒ (1�2)m ≤W ≤ N(3�4)M �⇒ (4�3)M ≤ N2m

�⇒ M ≤ log4�3(N2m) = m + logN

log(4�3) ≈ 2.4(m + logN)

Michael Dinitz Lecture 25: Online Learning December 2, 2025 7 / 15



General case: no perfect expert

Weighted Majority

� Initialize all experts to weight 1

� Predict based on weighted majority vote

� Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1�2)m
� Best expert has weight at least (1�2)m

W ≤ N(3�4)M
� Every time we make a mistake, at least

1�2 the total weight gets decreased by
1�2, so left with at most 3�4 of the
original total weight

�⇒ (1�2)m ≤W ≤ N(3�4)M �⇒ (4�3)M ≤ N2m

�⇒ M ≤ log4�3(N2m) = m + logN

log(4�3) ≈ 2.4(m + logN)

Michael Dinitz Lecture 25: Online Learning December 2, 2025 7 / 15



General case: no perfect expert

Weighted Majority

� Initialize all experts to weight 1

� Predict based on weighted majority vote

� Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1�2)m
� Best expert has weight at least (1�2)m

W ≤ N(3�4)M
� Every time we make a mistake, at least

1�2 the total weight gets decreased by
1�2, so left with at most 3�4 of the
original total weight

�⇒ (1�2)m ≤W ≤ N(3�4)M �⇒ (4�3)M ≤ N2m

�⇒ M ≤ log4�3(N2m) = m + logN

log(4�3) ≈ 2.4(m + logN)
Michael Dinitz Lecture 25: Online Learning December 2, 2025 7 / 15



A Better Algorithm (and More General Framework!)

What if we have more than two choices? What if some mistakes are “worse” than others?

General setup:

� T time steps (days)

� N actions the algorithm can take (experts)

� At each time step t ∈ [T ], algorithm A chooses an action i ∈ [N]
� Each action i ∈ [N] then receives a loss `t

i ∈ [0,1], and the algorithm receives loss
`t
A = `t

i corresponding to the action i that it chose at time t
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Regret

Our new goal is to minimize regret.

Definition (Regret)

For all t ∈ [T ], let `t
A be the loss su↵ered by algorithm A at time t. Then the regret of

algorithm A is

Regret(A) = 1

T

T�
t=1

`t
A − 1

T
min
i∈[N]

T�
t=1

`t
i

An algorithm is a no-regret algorithm if its regret goes to 0 as T →∞.
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Multiplicative Weights Algorithm

Algorithm Multiplicative Weights (MW)

For i ∈ [N], let w
1
i = 1 be the weight of action i at time 1.

for t = 1, . . . ,T do
Let W

t = ∑
i∈[N]w

t
i be the total weight at time t.

Choose action i ∈ [N] at random according to the distribution D(i) = wt
i

W t

Pay loss `t
i for action i at time t

Update weights: w
t+1
j ← w

t
j ⋅ e−"`t

j for all j ∈ [N]
end for
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Multiplicative Weights Analysis

Theorem

MW is a no-regret algorithm. Specifically, it has expected regret O(" + log(N)
"T ). That is,

1

T

T�
t=1

E[`t
A] − 1

T
min
i∈[N]

T�
t=1

`t
i ∈ O �" + ln(N)"T

�

If we set " =� lnN
T , we get that the expected regret of MW is at most 2

�
lnN
T . This means

that MW is a no-regret algorithm, since its regret → 0 as T →∞.
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Proof Sketch
Let Wt = ∑i∈[N]w t

i� We can show that
WT+1 ≤ N exp("2T − "∑T

t=1E[`t
A])

For any action i , we know that

� WT+1 ≥ w
T+1
i = exp(−"∑T

t=1 `t
i )

So, like in the analysis for Weighted Majority, we have upper and lower bounds on WT+1:
exp(−" T�

t=1
`t
i ) = w

T+1
i ≤WT+1 ≤ N exp("2T − " T�

t∈[T ]
E[`t

A])

⇒ −" �
t∈[T ]

`t
i ≤ lnN + "2T − " �

t∈[T ]
E[`t

A]
⇒ " �

t∈[T ]
E[`t

A] − " �
t∈[T ]

`t
i ≤ lnN + "2T

⇒ �
t∈[T ]

E[`t
A] − �

t∈[T ]
`t
i ≤ lnN

"
+ "T ⇒ 1

T
�

t∈[T ]
E[`t

A] − 1

T
�

t∈[T ]
`t
i ≤ lnN

"T
+ "
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Proof Sketch

Still need to show that WT+1 ≤ N exp("2T − "∑T
t∈[T ]E[`t

A])

Wt+1 = �
i∈[N]

w
t+1
i = �

i∈[N]
w

t
i exp(−"`t

i ) By definition of w
t+1
i

≤ �
i∈[N]

w
t
i ⋅ (1 − "`t

i + "2`t
i
2) exp(−x) ≤ 1 − x + x

2 for x > 0
≤ �

i∈[N]
w

t
i ⋅ (1 − "`t

i + "2) All losses in [0,1]
= (1 + "2) �

i∈[N]
w

t
i − " �

i∈[N]
w

t
i `

t
i
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Summary

� Online learning models learning problems where data arrives “online” (one at a time)

� Given a set of actions to choose from, we want to learn a good sequence of actions to
take so that we do not incur too much loss

� We can analyze the performance of online learning algorithms using the notion of regret:
how well did the algorithm perform compared to the best action in hindsight?

� We showed the multiplicative weights algorithm is a no-regret algorithm (its expected
regret goes to 0 as T →∞).
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