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Introduction

Machine Learning from the point of view of theoretical computer science
» Proofs about performance
» Minimize assumptions

> Not going to talk about useful in practice, etc.

Today:

> Online Learning
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Online Learning
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Online Learning

Learning over time, not just one-shot
> See data one piece at a time
> Try to use historical data to make decisions as we go

» We don't assume data comes from a distribution. Could be adversarially chosen!
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Example: Learning From Expert Advice

Intuition: stock market
> N experts
> Every day:
> Every expert predicts up/down

> Algorithm makes prediction
» Find out what happened

What can/should we do? Can we always make an accurate prediction?
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Example: Learning From Expert Advice

Intuition: stock market

> N experts
> Every day:
> Every expert predicts up/down

> Algorithm makes prediction
» Find out what happened

What can/should we do? Can we always make an accurate prediction?

» No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

» Don't try to learn the market: learn which expert knows the market best
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:
» Majority vote of remaining experts

» Remove incorrect experts
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

» Majority vote of remaining experts

» Remove incorrect experts

Best expert makes 0 mistakes

We make:
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

» Majority vote of remaining experts

» Remove incorrect experts

Best expert makes 0 mistakes

We make: O(log N) mistakes
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

» Majority vote of remaining experts

» Remove incorrect experts

Best expert makes 0 mistakes

We make: O(log N) mistakes
> Each mistake decreases # experts by 1/2
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General case: no perfect expert

Michael Dinitz Lecture 25: Online Learning December 2, 2025 7/15



General case: no perfect expert

Weighted Majority
> Initialize all experts to weight 1
» Predict based on weighted majority vote

» Penalize mistakes by cutting weights in half

M = # mistakes we've made
m = # mistakes best expert has made
W = total weight
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General case: no perfect expert

Weighted Majority
> Initialize all experts to weight 1

» Predict based on weighted majority vote

» Penalize mistakes by cutting weights in half

M = # mistakes we've made

m = # mistakes best expert has made
W = total weight

w>(1/2)™
> Best expert has weight at least (1/2)™
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General case: no perfect expert
Weighted Majority

> Initialize all experts to weight 1

» Predict based on weighted majority vote

» Penalize mistakes by cutting weights in half

M = # mistakes we've made w < N(3/4)M
m = # mistakes best expert has made

> Every time we make a mistake, at least
W = total weight

1/2 the total weight gets decreased by

1/2, so left with at most 3/4 of the
w>(1/2)™

original total weight
> Best expert has weight at least (1/2)™
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General case: no perfect expert
Weighted Majority

> Initialize all experts to weight 1

» Predict based on weighted majority vote

» Penalize mistakes by cutting weights in half

M = # mistakes we've made w < N(3/4)M
m = # mistakes best expert has made

> Every time we make a mistake, at least
W = total weight

1/2 the total weight gets decreased by

1/2, so left with at most 3/4 of the
w>(1/2)™

original total weight
> Best expert has weight at least (1/2)™

— (1/2)" < W < N(3/H)Y — (4/3)" < N2
m +log N
log(4/3)
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A Better Algorithm (and More General Framework!)

What if we have more than two choices? What if some mistakes are “worse” than others?
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A Better Algorithm (and More General Framework!)

What if we have more than two choices? What if some mistakes are “worse” than others?

General setup:
> T time steps (days)
> N actions the algorithm can take (experts)
> At each time step t € [ T], algorithm A chooses an action i € [N]

> Each action i € [N] then receives a loss £; € [0,1], and the algorithm receives loss
¢%, = £; corresponding to the action i that it chose at time t
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Regret

Our new goal is to minimize regret.
Definition (Regret)

For all t e [T], let Ei\ be the loss suffered by algorithm A at time t. Then the regret of
algorithm A is

Regret(A) = Zﬁt - — mm Zﬁt
T ie[N] 5
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Regret

Our new goal is to minimize regret.

Definition (Regret) |

For all t e [T], let Ei\ be the loss suffered by algorithm A at time t. Then the regret of
algorithm A is

Regret(A) = Zﬁt - — mm Zﬁt
T ie[N] 5

An algorithm is a no-regret algorithm if its regret goes to 0 as T — oo.
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Multiplicative Weights Algorithm

Algorithm Multiplicative Weights (MW)

For i e [N], let w,.1 =1 be the weight of action i at time 1.
fort=1,..., T do

Let W' = ¥ w; be the total weight at time t.
ie[N]

w!

Choose action i € [N] at random according to the distribution D(i) = %
Pay loss £; for action i at time t

1

_pt
Update weights: wj“ « wjt e % for all Jje[N]

end for

y +
\/f/’\g/ l/j~("f{;)

Michael Dinitz Lecture 25: Online Learning December 2, 2025 10/15



Multiplicative Weights Analysis

Theorem

MW is a no-regret algorithm. Specifically, it has expected regret O(e + 'Oi(.rN) ). That is,

1 L 1 U In(N
_ZE[EZ]——minZE’fGO(e+ n( ))
T t=1 T ie[N] t=1 eT
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Multiplicative Weights Analysis

Theorem

MW is a no-regret algorithm. Specifically, it has expected regret O(e + 'Og(.rN) ). That is,

EX

1 L 1 U In(N
_ZE[EZ]——minZEfGO(e+ n( ))
T t=1 T ie[N] t=1 eT

If we set € = M, we get that the expected regret of MW is at most 2/
T g P g T
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Multiplicative Weights Analysis

Theorem

MW is a no-regret algorithm. Specifically, it has expected regret O(e + 'Oi(.rN) ). That is,

1 L 1 U In(N
_ZE[EZ]——minZEfGO(e+ n(V)
T t=1 T ie[N] t=1 eT

If we set € =4/ % we get that the expected regret of MW is at most 2 % This means

that MW is a no-regret algorithm, since its regret - 0 as T — oo.
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Proof Sketch
Let Wt = ZiE[N] Wl.t

» We can show that

Wr.a < Nexp(e?T - £, E[€7])
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Proof Sketch

Let W, = Y ; L C
et Wi = Yicn) W, For any action 1, we know that
» We can show that T

» W > W. +1 _ _ T Et
Wr.1 < Nexp(e?T —szz;lE[Ei\]) T+12 W exp(-e X5 £;)

I
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Proof Sketch
Let Wt = ZiE[N] w
» We can show that
Wr,1 < Nexp(e?T —EZ IA)

For any action 7, we know that
T
» Wra 2w = exp(-e $T, £9)

So, like in the analysis for Weighted Majority, we have upper and Iower bounds on Wr,1:

exp(- sZet)_ < Wri1 < Nexp(e?T -¢ Z E[¢4])
te[T]
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Proof Sketch
Let Wt = ZiE[N] w
» We can show that
Wr,1 < Nexp(e?T —EZ IA)

For any action 7, we know that
T
» Wra 2w = exp(-e $T, £9)

So, like in the analysis for Weighted Majority, we have upper and lower bounds on Wt,1:
T

exp(- sZEt)- L<Wri<Nexp(e®T-¢ Y E[£4])
te[T]

=>- Y Li<inN+e’T-¢ Y E[¢4]

te[T] te[T]
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Proof Sketch
Let Wt = ZiE[N] w
» We can show that
Wr,1 < Nexp(e?T —EZ IA)

For any action 7, we know that
T
» Wra 2w = exp(-e $T, £9)

So, like in the analysis for Weighted Majority, we have upper and lower bounds on Wt,1:
T

exp(- sZEt)- L<Wri<Nexp(e®T-¢ Y E[£4])
te[T]

=>- Y Li<inN+e’T-¢ Y E[¢4]

te[T] te[T]
=e Y E[t,]-¢ > EstnN+&72T
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Proof Sketch
Let Wt = ZiE[N] w
» We can show that
Wr,1 < Nexp(e?T —EZ IA)

For any action 7, we know that
T
» Wra 2w = exp(-e $T, £9)

So, like in the analysis for Weighted Majority, we have upper and lower bounds on Wt,1:

T
exp(- sZEt) = L<Wri<Nexp(e®T-¢ Y E[£4])
te[T]

=>- Y Li<inN+e’T-¢ Y E[¢4]

te[T] te[T]
=e Y E[t,]-¢ > EstnN+&72T

te[T] te[T]

InN 1 1 InN
= Y E[£;]- ) £t<n—+sT=>— Y E[eL]-= > E;sn—+€
te[T] te[T] € T te[T] el
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Proof Sketch

Still need to show that Wr,1 < Nexp(e?T -¢ ZtTE[T] E[fi\])
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Proof Sketch

Still need to show that Wr,1 < Nexp(e?T -¢ ZtTE[T] E[fi\])

Wei= Y wi =Y wiexp(-et)) By definition of wf*!
ie[N] ie[N]
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Proof Sketch

Still need to show that Wr,1 < Nexp(e?T -¢ ZtT E[fi\])

e[T]
Wei= Y wi =Y wiexp(-et)) By definition of wf*!
ie[N] ie[N]
<y wit-(l—e£f+52£fz) exp(-x) <1-x+x?for x>0
ie[N]
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Proof Sketch

Still need to show that Wr,1 < Nexp(e?T -¢ ZtT E[fi\])

€[T]
Wei= Y wi =Y wiexp(-et)) By definition of wf*!
ie[N] ie[N]
<y wit-(l—e£f+52£fz) exp(-x) <1-x+x?for x>0
ie[N]
< Y owio(1-el+e?) All losses in [0,1]
ie[N]
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Proof Sketch
Still need to show that Wr,1 < Nexp(e2T-e ¥ E[€4])

e[T]
w!
=1+ )W, -eW, Y —¢ by def. of W,
Wer= ¥ wil= 3 wlexp(-eth) 2w, b
ie[N] ie[N] i '
<y wit-(l—s£f+62£f2)
ie[N]
< Y owio(1-ell+e?)
ie[N]
=(1+€%) 3 wi-e ) wi;
ie[N] ie[N]
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Proof Sketch
Still need to show that Wr,1 < Nexp(e2T-e ¥ E[€4])

e[T]
w!
t+1 t t =(1+€2)Wt-€Wt Z — ¢t by def. of W,
Wer= ¥ wi= 3 wfexp(-ct;) o W

ie[N] ie[N] Wt
<y wit-(l—s£f+62£f2) =W, (1+e%-¢ Y iﬁf)

ie[N] ie[N] t
< Y owio(1-ell+e?)

ie[N]
=(1+e%) 3 wi-c ) wit;

ie[N] ie[N]
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Proof Sketch
Still need to show that Wr,1 < Nexp(e2T-e ¥ E[€4])

€[T]
wi
2 i pt
= W, - W, ; . of W,
Wiy = ¥ wit+1= T wtexp(-ett) (L+e’ )W, -€ tie%:\[] Wte' by def. of W,
ie[N] ie[N] "
<y wit-(l—s£f+€2£f2) =Wi(1+e’-¢ ) iﬁf)
ie[N] ie[N] t
< Fo(1-ett+e? w;
_’.e%:\,]w' (1-et;+e7) < Weexp(e®-¢ Y —£) exp(x)>1+x
ie[N] t
=(1+€%) ) wi-e Y wit;
ie[N] ie[N]
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Proof Sketch
Still need to show that Wr,1 < Nexp(e2T-e ¥ E[€4])

€[T]
) w!
= W, -eW, 4 . of W,
Wiy = ¥ wit+1= T wtexp(-ett) (L+e’ )W, -€ tie%:\[] Wte' by def. of W,
ie[N] ie[N] "
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Proof Sketch
Still need to show that Wr,1 < Nexp(e2T-e ¥ E[€4])

€[T]
) w!
= W, -eW, 4 . of W,
Wiy = ¥ wit+1= T wtexp(-ett) (L+e’ )W, -€ tie%:\[] Wte' by def. of W,
ie[N] ie[N] "
<y wit-(l—s£f+€2£f2) =Wi(1+e’-¢ ) iﬁf)
ie[N] ie[N] t
< Fo(1-ett+e? w;
_’.e%:\,]w' (1-et;+e7) < Weexp(e®-¢ Y —£) exp(x)>1+x
ie[N] t
= (1+¢&2 wi-¢ w!et
e G 0] by def. of E[4]

Unrolling over all t e [T]:
= Wry < Wh M exp(&:2 -~ EE[EZ])

= Nexp(e’T -¢ Y. E[£3])
te[T]
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Summary

> Online learning models learning problems where data arrives “online” (one at a time)

» Given a set of actions to choose from, we want to learn a good sequence of actions to
take so that we do not incur too much loss

> We can analyze the performance of online learning algorithms using the notion of regret:
how well did the algorithm perform compared to the best action in hindsight?

> We showed the multiplicative weights algorithm is a no-regret algorithm (its expected
regret goes to 0 as T — o).
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