
601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz and Jessica Sorrell
Topic: Intro to Algorithmic Learning Theory Date: 12/2/25

25.1 Introduction

Today we’re going to talk about machine learning, but from an algorithms point of view. Ma-
chine learning is a pretty broad and interdisciplinary field, including ideas from AI, statistics, and
theoretical computer science. All of these are important ingredients, but we’re going to focus on
machine learning from a TCS point of view. This means in particular that we’re going to focus
on provable guarantees and we’ll try to make our analyses as worst-case as possible, as opposed to
more AI or stats-based points of view where the focus is on making probabilistic assumptions and
then designing algorithms that seem to work well (either provably or in practice).

25.2 Online Learning

Suppose that we want to predict whether the stock market will go up or down tomorrow. There
are many experts who will tell us what they think will happen, but obviously they might disagree
with each other. We want to use their advice to take some action (e.g., buy or sell a stock). Then
the next day we will find out what happens, and we receive some loss based on our action. Then
each expert will make another prediction for the day after, we take some action, and the process
repeats (either forever or for some number of rounds).

What is a principled way to approach the problem of deciding which experts to follow, and what
kinds of guarantees can we obtain? The basic question that we’ll consider is whether we can do
nearly as well as the best expert in hindsight. In other words, we will look at how well each expert
does over all time (in our simplified setting, the number of mistakes that they make), and we will
try to design an algorithm which does nearly as well as the best of them. Note that this seems
extremely difficult to do – we don’t know anything about these n experts, and the adversary can
control what happens at every time point? So one expert might be good for a while and then
become terrible, and another expert might start off terrible but get better, etc. Nevertheless, we’ll
want to guarantee that we do almost as well as the best single expert.

25.2.1 Perfect expert

Let’s start with a simpler setting: suppose that we know one of the experts is perfect (never
makes a mistake), we just don’t know which one. Is there a strategy which will let us identify this
always-correct expert without making too many mistakes?

Let’s do the following: each day, we take a majority vote of the experts and use that as our
prediction. Then we eliminate any experts that were wrong. It is easy to see that this algorithm
will only make at most logN mistakes. This is because every time it makes a mistake, that means
that at least half of the remaining experts made the incorrect prediction, so we will eliminate at
least half of the remaining experts. Since we started with N experts, we can only eliminate at least

1

Algorithm 1 The Halving Algorithm

Let E1 = {1, . . . , N} be the set of experts
for t = 1, . . . , T do

Let E tU ⊆ E t be the subset of experts that predict “up” at time t
Let E tD ⊆ E t be the subset of experts that predict “down” at time t
if |E tU | > |E tD| then
Predict “buy”

else
Predict “sell”

end if
See outcome
Remove all experts that made a mistake. That is, if the stock goes up, E t+1 ← E t \ E tD and if
the stock goes down, E t+1 ← E t \ E tU

end for

half of the remaining experts logN times before we are left with one expert. And since we are
assuming that there is a perfect expert, this one will never be eliminated.

This gives a “mistake bound” of logN .

25.2.2 No perfect expert

If there is no perfect expert then making a mistake doesn’t completely disqualify an expert, so we
don’t want to completely eliminate experts who make a mistake. Instead, we’ll give each expert a
“weight”, and decrease the weight of experts who make mistakes.

This idea gives the Weighted Majority algorithm:

Algorithm 2 Weighted Majority

For i ∈ [N], let w1
i = 1 be the weight of expert i at time 1.

for t = 1, . . . , T do
Let W t

U =
∑

i∈[N]:
expert i predicted “up”

wt
i be the weight of all experts that predict “up” at time t

Let W t
D =

∑
i∈[N]:

expert i predicted “down”

wt
i be the weight of all experts that predict “down” at time t

if W t
U > W t

D then
Predict “buy”

else
Predict “sell”

end if
See outcome
If the stock goes up, wt+1

i ← wt
i/2 for all experts i that predicted “down” at time t.

If the stock goes down, wt+1
i ← wt

i/2 for all experts i that predicted “up” at time t.
end for

2

To analyze this, let M be the number of mistakes that we have made so far, let m be the number
of mistakes that the best expert has made so far, and let W be the total weight (which starts at
n and decreases throughout the algorithm). When we make a mistake, that means that at least
half of the current weight gets decreased by half, so W drops by at least 25%. So after we’ve made
M mistakes, W is at most N(3/4)m. On the other hand, the weight of the best expert is exactly
(1/2)m. Thus

(1/2)m ≤ N(3/4)M

(4/3)M ≤ N2m

M ≤ log4/3(N2m) = (m+ logN)/ log(4/3) ≈ 2.4(m+ logN)

This is a pretty good result: the number of mistakes that we make is linear (with a reasonably small
constant) in the number of mistakes made by the best expert. But what if the best expert is still
wrong 20% of the time? Then our algorithm is only doing slightly better than random guessing!
(Even if we ignore the logN part, a mistake bound of 2.4m would mean that we make mistakes
48% of the time).

It turns out that we can do even better, and also handle more general settings. Let’s define some
notation and a framework for online learning that generalize the stock market example.

• T : the number of time steps (e.g., days)

• N : the number of actions the algorithm can take (e.g., the number of experts in the stock
market example)

• At every time step t ∈ [T], the algorithm A chooses an action i ∈ [N]

• Each action i ∈ [N] then receives a loss ℓti ∈ [0, 1], and the algorithm receives loss ℓtA = ℓti
corresponding to the action i that it chose at time t

What is the objective of a learning algorithm in this more general setting? There’s no longer
a natural notion of “mistake”. There are just actions the algorithm can pick from and losses
associated with those actions at every timestep. So, rather than comparing the number of mistakes
made by an algorithm to that of the best expert in hindsight, we will compare the loss suffered by
our algorithm to that of the best fixed action it could have taken in hindsight.

Definition 25.2.1 (Regret) For all t ∈ [T], let ℓtA be the loss suffered by algorithm A at time t.
Then the regret of algorithm A is

Regret(A) =
1

T

T∑
t=1

ℓtA −
1

T
min
i∈[N]

T∑
t=1

ℓti

We will now introduce the Multiplicative Weights Algorithm (MWA), which you can think of as a
generalization of the weighted majority algorithm. As in the weighted majority algorithm we will
downweight actions that perform poorly, but it’s not clear how to take a weighted vote of actions
in our more general setting! Instead, we will treat the weights over actions as a distribution, and
our algorithm will choose an action at random according to that distribution.

3

Algorithm 3 Multiplicative Weights (MW)

For i ∈ [N], let w1
i = 1 be the weight of action i at time 1.

for t = 1, . . . , T do
Let W t =

∑
i∈[N]

wt
i be the total weight at time t.

Choose action i ∈ [N] at random according to the distribution D(i) =
wt

i
W t

See loss ℓti for action i at time t

Update weights: wt+1
j ← wt

j · e
−εℓtj for all j ∈ [N]

end for

Theorem 25.2.2 MW has an expected regret of O(ε+ log(N)
εT). That is,

1

T

T∑
t=1

E[ℓtA]−
1

T
min
i∈[N]

T∑
t=1

ℓti ∈ O

(
ε+

log(N)

εT

)

We will analyze MW much like the weighted majority algorithm – we will use the sum of weights
at time t to relate the loss of the best fixed action to the loss of the sequence of actions taken by
the algorithm. At an intuitive level, in any round where the algorithm does very poorly, we expect
the weight to drop significantly. At the same time, if any action does very well over all rounds, the
total weight can’t have dropped too much, since the total weight is always bounded below by the
weight on the best action.

Proof: Using the fact that e−x ≤ 1−x+x2 for x > 0, and 1+x ≤ ex, we can bound the decrease
in the total weights in terms of the expected loss of the algorithm as follows:

Wt+1 =
∑
i∈[N]

wt+1
i by definition of Wt+1

=
∑
i∈[N]

wt
i · e−εℓti by definition of wt+1

i

≤
∑
i∈[N]

wt
i · (1− εℓti + ε2ℓti

2
) e−x ≤ 1− x+ x2 for x > 0

≤
∑
i∈[N]

wt
i · (1− εℓti + ε2) ℓti ∈ [0, 1]

= (1 + ε2)
∑
i∈[N]

wt
i − ε

∑
i∈[N]

wt
iℓ

t
i

= (1 + ε2)Wt − εWt

∑
i∈[N]

wt
i

Wt
ℓti by definition of Wt

= Wt(1 + ε2 − ε
∑
i∈[N]

wt
i

Wt
ℓti)

≤Wt exp(ε
2 − ε

∑
i∈[N]

wt
i

Wt
ℓti) 1 + x ≤ ex

4

= Wt exp(ε
2 − εE[ℓtA]) by definition of E[ℓtA]

where the last equality follows from the fact that the algorithm takes action i, and therefore suffers

loss ℓti, with probability
wt

i
Wt

.

This gives us a lower bound on how much the total weight decreases from one round of the algorithm
to the next as a function of the expected loss, but recall that the regret of an algorithm relates
the loss over all rounds to the loss of the best action in hindsight. So, we’ll want to unroll this
inequality over all T rounds of the algorithm.

WT+1 ≤W1

∏
t∈T

exp(ε2 − εE[ℓtA])

= W1 exp(ε
2T − ε

∑
t∈[T]

E[ℓtA])

= N exp(ε2T − ε
∑
t∈[T]

E[ℓtA])

where the last line follows from the initialization of w1
i = 1 for all i ∈ [N].

Great! Now we have an upper bound on WT+1 in terms of the expected loss of the algorithm.
Next, we want a lower bound on WT+1 in terms of the loss of the best fixed action in hindsight.
This will allow us to bound regret by showing that the expected loss of the algorithm can’t be too
much larger than that of the best fixed action. This lower bound follows straightforwardly from
the fact that the total weight is always at least the weight of the best fixed action. So we get

Wt ≥
∑
i∈[N]

wt
i = exp(−ε

∑
t∈[T]

ℓti),

for any i ∈ [N].

Putting our lower and upper bounds together, we can conclude that for any action i ∈ [N] (including
the best fixed action), the total weight is upper and lower bounded as follows:

exp(−ε
∑
t∈[T]

ℓti) = wt
i ≤WT ≤ N exp(ε2T − ε

∑
t∈[T]

E[ℓtA])

We ultimately want to relate the sums of losses to eachother to bound regret, so let’s take logs of
both sides of the inequality above to get

−ε
∑
t∈[T]

ℓti ≤ lnN + ε2T − ε
∑
t∈[T]

E[ℓtA].

We then rearrange terms and divide through by ε to get∑
t∈[T]

E[ℓtA]−
∑
t∈[T]

ℓTi ≤
lnN

ε
+ εT

5

Now the left-hand side of the inequality is starting to look like our definition of regret! But we
defined regret to be the difference of the average losses, so to finish the proof, we divide through
by the total number of rounds T to get

1

T

∑
t∈[T]

E[ℓtA]−
1

T
min
i∈[N]

∑
t∈[T]

ℓti ≤
lnN

εT
+ ε

Then if we take ε =
√

lnN
T , we get that the expected regret of MW is

1

T

∑
t∈[T]

E[ℓtA]−
1

T
min
i∈[N]

∑
t∈[T]

ℓti ≤ 2

√
lnN

T
.

This demonstrates that Multiplicative Weights is what is known as a “no-regret” algorithm: its
expected regret goes to 0 as T → ∞. Next time, we will see that Multiplicative Weights (and
no-regret algorithms more generally) actually have a wide variety of applications beyond online
learning, and in fact can be used to solve linear programming problems we discussed in previous
lectures!

6

	Introduction
	Online Learning
	Perfect expert
	No perfect expert

