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Introduction

Machine Learning from the point of view of theoretical computer science

▸ Proofs about performance

▸ Minimize assumptions

▸ Not going to talk about useful in practice, etc.

Today:

▸ Online Learning
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Online Learning

Learning over time, not just one-shot

▸ See data one piece at a time

▸ Try to use historical data to make decisions as we go

▸ We don’t assume data comes from a distribution. Could be adversarially chosen!
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Example: Learning From Expert Advice

Intuition: stock market

▸ N experts
▸ Every day:

▸ Every expert predicts up/down
▸ Algorithm makes prediction
▸ Find out what happened

What can/should we do? Can we always make an accurate prediction?

▸ No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

▸ Don’t try to learn the market: learn which expert knows the market best
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

▸ Majority vote of remaining experts

▸ Remove incorrect experts

Best expert makes 0 mistakes

We make: O(log N) mistakes

▸ Each mistake decreases # experts by 1/2
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General case: no perfect expert

Weighted Majority

▸ Initialize all experts to weight 1

▸ Predict based on weighted majority vote

▸ Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1/2)m
▸ Best expert has weight at least (1/2)m

W ≤ N(3/4)M
▸ Every time we make a mistake, at least

1/2 the total weight gets decreased by
1/2, so left with at most 3/4 of the
original total weight

Ô⇒ (1/2)m ≤ W ≤ N(3/4)M Ô⇒ (4/3)M ≤ N2m

Ô⇒ M ≤ log4/3(N2m) =
m + log N
log(4/3)

≈ 2.4(m + log N)
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A Better Algorithm (and More General Framework!)

What if we have more than two choices? What if some mistakes are “worse” than others?

General setup:

▸ T time steps (days)

▸ N actions the algorithm can take (experts)

▸ At each time step t ∈ [T ], algorithm A chooses an action i ∈ [N]
▸ Each action i ∈ [N] then receives a loss `t

i ∈ [0,1], and the algorithm receives loss
`t
A = `t

i corresponding to the action i that it chose at time t
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Regret

Our new goal is to minimize regret.

Definition (Regret)

For all t ∈ [T ], let `t
A be the loss suffered by algorithm A at time t. Then the regret of

algorithm A is

Regret(A) =
1

T

T
∑
t=1

`t
A −

1

T
min
i∈[N]

T
∑
t=1

`t
i

An algorithm is a no-regret algorithm if its regret goes to 0 as T →∞.
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Multiplicative Weights Algorithm

Algorithm Multiplicative Weights (MW)

For i ∈ [N], let w1
i = 1 be the weight of action i at time 1.

for t = 1, . . . ,T do
Let W t = ∑

i∈[N]

w t
i be the total weight at time t.

Choose action i ∈ [N] at random according to the distribution D(i) = w t
i

W t

Pay loss `t
i for action i at time t

Update weights: w t+1
j ← w t

j ⋅ e
−ε`t

j for all j ∈ [N]
end for
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Multiplicative Weights Analysis

Theorem

MW is a no-regret algorithm. Specifically, it has expected regret O(ε + log(N)

εT ). That is,

1

T

T
∑
t=1

E[`t
A] −

1

T
min
i∈[N]

T
∑
t=1

`t
i ∈ O (ε +

ln(N)
εT

)

If we set ε =
√

lnN
T , we get that the expected regret of MW is at most 2

√
lnN
T . This means

that MW is a no-regret algorithm, since its regret → 0 as T →∞.
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Proof Sketch
Let Wt = ∑i∈[N]

w t
i

▸ We can show that
WT+1 ≤ N exp(ε2T − ε∑T

t=1 E[`t
A])

For any action i , we know that

▸ WT+1 ≥ wT+1
i = exp(−ε∑T

t=1 `
t
i )

So, like in the analysis for Weighted Majority, we have upper and lower bounds on WT+1:

exp(−ε
T
∑
t=1

`t
i ) = wT+1

i ≤ WT+1 ≤ N exp(ε2T − ε
T
∑

t∈[T ]

E[`t
A])

⇒ −ε ∑
t∈[T ]

`t
i ≤ lnN + ε2T − ε ∑

t∈[T ]

E[`t
A]

⇒ ε ∑
t∈[T ]

E[`t
A] − ε ∑

t∈[T ]

`t
i ≤ lnN + ε2T

⇒ ∑
t∈[T ]

E[`t
A] − ∑

t∈[T ]

`t
i ≤

lnN
ε

+ εT ⇒
1

T
∑

t∈[T ]

E[`t
A] −

1

T
∑

t∈[T ]

`t
i ≤

lnN
εT

+ ε
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Proof Sketch

Still need to show that WT+1 ≤ N exp(ε2T − ε∑T
t∈[T ]

E[`t
A])

Wt+1 = ∑
i∈[N]

w t+1
i = ∑

i∈[N]
w t

i exp(−ε`t
i ) By definition of w t+1

i

≤ ∑
i∈[N]

w t
i ⋅ (1 − ε`t

i + ε
2`t

i
2) exp(−x) ≤ 1 − x + x2 for x > 0

≤ ∑
i∈[N]

w t
i ⋅ (1 − ε`t

i + ε
2) All losses in [0,1]

= (1 + ε2) ∑
i∈[N]

w t
i − ε ∑

i∈[N]
w t

i `
t
i
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Summary

▸ Online learning models learning problems where data arrives “online” (one at a time)

▸ Given a set of actions to choose from, we want to learn a good sequence of actions to
take so that we do not incur too much loss

▸ We can analyze the performance of online learning algorithms using the notion of regret:
how well did the algorithm perform compared to the best action in hindsight?

▸ We showed the multiplicative weights algorithm is a no-regret algorithm (its expected
regret goes to 0 as T →∞).
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