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Introduction

Machine Learning from the point of view of theoretical computer science
» Proofs about performance
» Minimize assumptions

» Not going to talk about useful in practice, etc.

Today:

» Online Learning
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Online Learning
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Online Learning

Learning over time, not just one-shot
» See data one piece at a time
» Try to use historical data to make decisions as we go

» We don't assume data comes from a distribution. Could be adversarially chosen!
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Example: Learning From Expert Advice

Intuition: stock market
» N experts
» Every day:
> Every expert predicts up/down

> Algorithm makes prediction
» Find out what happened

What can/should we do? Can we always make an accurate prediction?
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Example: Learning From Expert Advice

Intuition: stock market

» N experts
» Every day:
> Every expert predicts up/down

> Algorithm makes prediction
» Find out what happened

What can/should we do? Can we always make an accurate prediction?

» No! Experts could all be essentially random, uncorrelated with market
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Example: Learning From Expert Advice

Intuition: stock market

» N experts
» Every day:

> Every expert predicts up/down
> Algorithm makes prediction
» Find out what happened

What can/should we do? Can we always make an accurate prediction?

» No! Experts could all be essentially random, uncorrelated with market
Easier (but still interesting) goal: can we do as well as the best expert?

» Don't try to learn the market: learn which expert knows the market best
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:
» Majority vote of remaining experts

» Remove incorrect experts
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

» Majority vote of remaining experts

» Remove incorrect experts

Best expert makes 0 mistakes

We make:
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

» Majority vote of remaining experts

» Remove incorrect experts

Best expert makes 0 mistakes

We make: O(log N) mistakes
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Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:
» Majority vote of remaining experts

» Remove incorrect experts

Best expert makes 0 mistakes

We make: O(log N) mistakes
» Each mistake decreases # experts by 1/2
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General case: no perfect expert
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General case: no perfect expert

Weighted Majority
» Initialize all experts to weight 1
» Predict based on weighted majority vote
> Penalize mistakes by cutting weights in half

M = # mistakes we've made
m = # mistakes best expert has made
W = total weight
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General case: no perfect expert

Weighted Majority
» Initialize all experts to weight 1

» Predict based on weighted majority vote

> Penalize mistakes by cutting weights in half

M = # mistakes we've made
m = # mistakes best expert has made
W = total weight

w > (1/2)™
» Best expert has weight at least (1/2)™
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General case: no perfect expert

Weighted Majority
» Initialize all experts to weight 1
» Predict based on weighted majority vote

> Penalize mistakes by cutting weights in half

M = # mistakes we've made W < N(3/4)M

m = # mistakes best expert has made » Every time we make a mistake, at least

W = total weight 1/2 the total weight gets decreased by
m 1/2, so left with at most 3/4 of the
W > (1/2) original total weight

» Best expert has weight at least (1/2)™
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General case: no perfect expert

Weighted Majority
» Initialize all experts to weight 1
» Predict based on weighted majority vote

> Penalize mistakes by cutting weights in half

M = # mistakes we've made W < N(3/4)M
m = # mistak.es best expert has made » Every time we make a mistake, at least
W = total weight 1/2 the total weight gets decreased by

1/2, so left with at most 3/4 of the

w2 (1/2)™ original total weight

» Best expert has weight at least (1/2)™

— (1/2)" < W < NE/HY — (4/3)" < N2
m+log N
log(4/3)
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A Better Algorithm (and More General Framework!)

What if we have more than two choices? What if some mistakes are “worse” than others?
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A Better Algorithm (and More General Framework!)

What if we have more than two choices? What if some mistakes are “worse” than others?

General setup:
» T time steps (days)
» N actions the algorithm can take (experts)
» At each time step t € [ T], algorithm A chooses an action i € [N]
> Each action i € [N] then receives a loss £ € [0,1], and the algorithm receives loss
2%, = £} corresponding to the action i that it chose at time t
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Regret

Our new goal is to minimize regret.
Definition (Regret)

Forall t e [T], let Efq be the loss suffered by algorithm A at time t. Then the regret of
algorithm A is

T

Regret(A) = Z - = 'I’GI’E;\I;I Zﬂt
t= t=1
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Regret

Our new goal is to minimize regret.
Definition (Regret)

Forall t e [T], let Efq be the loss suffered by algorithm A at time t. Then the regret of
algorithm A is
T

Regret(A) = Z - = 'I’GI’E;\I;I Zﬂt
t= t=1

An algorithm is a no-regret algorithm if its regret goes to 0 as T — oo.
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Multiplicative Weights Algorithm

Algorithm Multiplicative Weights (MW)

For i e [N], let wl.1 =1 be the weight of action i at time 1.
fort=1,..., T do
Let Wf= ¥ w/ be the total weight at time t.

i€[N]
L . C . w}
Choose action i € [N] at random according to the distribution D(i) = 7/
Pay loss £} for action i at time t
—ett ]
Update weights: th+1 « th e forallje [N]
end for
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Multiplicative Weights Analysis

Theorem

MW is a no-regret algorithm. Specifically, it has expected regret O(e + %). That is,

( In(N)
€+
eT

—Z [Et]—lmm Y £ieO
T ie[N] ¢
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Multiplicative Weights Analysis

Theorem

MW is a no-regret algorithm. Specifically, it has expected regret O(e + %). That is,

R | ¢ In(N)
_Z [€4 ]—?mm]tZ;E eO(e+ —

If we set € =4/ @ we get that the expected regret of MW is at most 2 g
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Multiplicative Weights Analysis

Theorem

MW is a no-regret algorithm. Specifically, it has expected regret O(e + %). That is,

In(N)

—Z [Et]—lmm 22t60(5+

T ie[N] ;3

If we set € =4/ @ we get that the expected regret of MW is at most 2 g This means

that MW is a no-regret algorithm, since its regret - 0 as T — oo.
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Proof Sketch
Let Wt = ZiG[N] Wt

1
» We can show that

Wri1 < Nexp(e’ T -e X, E[£}])
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Proof Sketch

Let Wt = Yiein) w; For any action i, we know that

» We can show that T+1 T
» Wrag>wl*l= 2
Wr,1 < Nexp(e2T -e X[ E[¢4]) 2w =exp(-e X, £)
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Proof Sketch

-5, t
Let We = Yiein) W; For any action i, we know that

» We can show that T

» W > w. I+l = _ T ot
Wri < Nexp(z—:zT—sZ:;';l E[£4]) T+ 2 W; exp(-e X,_1 ¢;)

So, like in the analysis for Weighted Majority, we have upper and lower bounds on Wr,;:

T T
exp(-e Y £5) =w " < Wr,g < Nexp(e?T-¢ Y E[£4])
t=1 te[T]
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Proof Sketch

-y, t
Let Wt = Yiein) w; For any action i, we know that

» We can show that T+l

> Wra 2w, Te
Wr.1 < Nexp(e?T —sZ;rzl E[£4]) T+ 2 W,

=exp(-e X, ;)

So, like in the analysis for Weighted Majority, we have upper and lower bounds on Wr,;:

T T
exp(-e Y £5) =w " < Wr,g < Nexp(e?T-¢ Y E[£4])
t=1 te[T]

=-c ) @;SInN+€2T—€ Y E[4]
te[T] te[T]
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Proof Sketch

-5, t
Let We = Yiein) W; For any action i, we know that
» We can show that T+1

> Wra 2w =exp(-eX], ¢
WT+1sNexp(€2T—sE;r=1E[£2]) T+1 2 W, exp(-e X;_; ¢;)

1

So, like in the analysis for Weighted Majority, we have upper and lower bounds on Wr,;:

T T
exp(-e Y £5) =w " < Wr,g < Nexp(e?T-¢ Y E[£4])
t=1 te[T]

=-c ) @;SInN+€2T—€ Y E[4]

te[T] te[T]
e Y E[f4]-€ Y £<InN+&*T
te[T] te[T]
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Proof Sketch

-5, t
Let We = Yiein) W; For any action i, we know that

» We can show that T+1

> Wra 2w, Te
Wr.1 < Nexp(e?T —sZ;rzl E[£4]) T+ 2 W,

= exp(-e 7, )

So, like in the analysis for Weighted Majority, we have upper and lower bounds on Wr,;:

T T
exp(-¢ ) €)= w,.TJ':l < Wr, < Nexp(e?T-¢ Y E[£45])

t=1 te[T]

=-c ) £ <InN+e*T-¢ Y E[4]

te[T] te[T]
e Y E[f4]-€ Y £<InN+&*T
te[T] te[T]
InN
= Y E[£4]- ) £ <—+eT
te[T] te[T] €
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Proof Sketch

-5, t
Let We = Yiein) W; For any action i, we know that

» We can show that T+1

> Wra 2w, Te
Wr.1 < Nexp(e?T —sZ;rzl E[£4]) T+ 2 W,

= exp(-e 7, )

So, like in the analysis for Weighted Majority, we have upper and lower bounds on Wr,;:

T T
exp(-¢ ) €)= w,.TJ':l < Wr, < Nexp(e?T-¢ Y E[£45])
t=1 te[T]
=-c ) £ <InN+e*T-¢ Y E[4]
te[T] te[T]
e Y E[f4]-€ Y £<InN+&*T
te[T] te[T]
InN 1 1 InN
= Y E[]- Y fcmheT== Y EE]-= T £ e
te[T] te[T] € T T m eT
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Proof Sketch

Still need to show that Wr,; < Nexp(e?T -¢ ZtTE[T] E[£4])
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Proof Sketch

Still need to show that Wr,; < Nexp(e?T -¢ ZtTE[T] E[£4])

Wei= Y wiht= Y w!exp(-etl) By definition of w/*!
i€[N] ie[N]
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Proof Sketch

Still need to show that Wr,; < Nexp(e?T -¢ ZtTE[T] E[£4])

Wei= Y wiht= Y w!exp(-etl) By definition of w/*!
i€[N] ie[N]
<y wi‘.(1—€£f+62£,52) exp(-x) <1-x+x2for x>0
ie[N]
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Proof Sketch

Still need to show that Wr,; < Nexp(e?T -¢ ZtTE[T] E[£4])

Wei= Y wiht= Y w!exp(-etl) By definition of w/*!
i€[N] ie[N]
<y wi‘.(1—€£f+62£,52) exp(-x) <1-x+x2for x>0
ie[N]
<Y wi-(1-elf+€%) All losses in [0,1]
i€[N]
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Proof Sketch

Still need to show that Wr,; < Nexp(e?T -¢ ZtTE[T] E[£4])

Wei= Y wiht= Y w!exp(-etl) By definition of w/*!

i€[N] ie[N]
<y wi‘.(1—€£f+62£,52) exp(-x) <1-x+x2for x>0

ie[N]
<Y wi-(1-elf+€%) All losses in [0,1]

i€[N]
=(1+€%) Y wi-¢ Y wie

ie[N] i€e[N]
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Proof Sketch
Still need to show that Wr,; < Nexp(e?T -¢ ZZ;[T] E[£4])

t

- 2 Wi ot
—(1+€ )Wt—E:Wt z —Ei

Wei= Y w/™ = Y wlexp(-et!) iS5y We
ie[N] ie[N]
<Y wi-(l-ef;+ ezﬂfz)
ie[N]
< Y owio(1-etl+e?)
ie[N]
= (1+€?) Z wi-¢ Z wil;
ie[N] ie[N]
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Proof Sketch
Still need to show that Wr,; < Nexp(e?T -¢ ZZ;[T] E[£4])

t

w;
=(1+HWe-eW, Y, 4! by def. of W,
W,,; = Z Wit+1 _ Z Wit exp(—sﬂf) ( )W, tie[zN] w, Y t
ie[N] ie[N] ¢
w;
<y wit-(1—€£f+e:2£fz) =W (1+e?-¢ Y —¢)
ie[N] ie[N] t
< Y owio(1-etl+e?)
ie[N]
=(1+e?) Y wi-e 3 wit
ie[N] ie[N]
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Proof Sketch
Still need to show that Wr,; < Nexp(e?T -¢ ZZ;[T] E[£4])

t

w!
=1+ )We-eW, Y, —¢f £ of W,
Wei= Y w/™ = Y wlexp(-et!) (1+e)We-e tl_%:v] Wtel by def. of W,
ie[N] ie[N] .
w!
<y wit-(1—€£f+e:2£fz) =W (1+e?-¢ Y —¢)
ie[N] ie[n] Wi
< Eo(1-ebt+&? wt
_ie%:V] " (1-e ite ) < Wtexp(ez—e Z _lelt) exp(x)>1+x
ie[N] t
= (1+€?) Y wi-e ) wie
ie[N] ie[N]
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Proof Sketch
Still need to show that Wr,; < Nexp(e?T -¢ ZZ;[T] E[£4])

t

- 2 Wi ot
—(1+€ )Wt—E:Wt z —Ei

Wei= Y w/™ = Y wlexp(-et!) iS5 We
ie[N] ie[N] ¢
w.
<y wit-(1—€£f+e:2£fz) =W (1+e?-¢ Y —¢)
ie[N] ie[N] t
< wt.(1-ebt+¢e? w;
,-e%:v] i ! ) < Wexp(e? -¢ > £;)
i€[N] t
= (1+€?) w!i-¢ wlet
,.E%:\,] i ,e%:\,] i = W, exp(e? - eE[£4])
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Proof Sketch
Still need to show that Wr,; < Nexp(e?T -¢ ZZ;[T] E[£4])
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Proof Sketch
Still need to show that Wr,; < Nexp(e?T -¢ Z;[T] E[£4])

t

— 2 w; t
—(1+€ )Wt—E:Wt z —Ei

Wei= Y w/™ = Y wlexp(-et!) iS5 We
ie[N] ie[N] ¢
w!
<y wit-(1—€£f+e:2£fz) =W (1+e?-¢ Y —¢)
ie[N] ie[N] t
< wt.(1-ebt+¢e? w;
,-e%:v] i it€) < Weexp(e?-¢ Y —-£f)
i€[N] t
=(1+¢&2 wi-¢ wiet
( )ie%:\l] ' ie[ZN] n = Weexp(e® - eE[£,])

Unrolling over all t e [T]:
= Wra1 < Wy I'Ite[T] exp(sz - €E[£i\])

=Nexp(e’T-¢ Y E[£4])
te[T]
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Summary

» Online learning models learning problems where data arrives “online” (one at a time)

» Given a set of actions to choose from, we want to learn a good sequence of actions to
take so that we do not incur too much loss

» We can analyze the performance of online learning algorithms using the notion of regret:
how well did the algorithm perform compared to the best action in hindsight?

» We showed the multiplicative weights algorithm is a no-regret algorithm (its expected
regret goes to 0 as T — o).
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