
Lecture 3: Intro to proofs for algorithms

Jessica Sorrell

September 2, 2025

601.433/633 Introduction to Algorithms

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 1 / 16



Announcements

� Grading policy change for quizzes: drop two lowest scores� First homework released today!� Due Monday, Sep 15, 11:59pm

� Course sta↵ change: Nate Robinson no longer part of the course sta↵

� More o�ce hours on course webpage / calendar, including Yan Zhong’s recitation-like

o�ce hours (Wed 6-7pm, Malone 107)

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 2 / 16



Today

Discuss common proof techniques for algorithms.

� Inductive arguments (weak, strong)

� Proof by contradiction

� Direct proof

� Loop invariant

� Proof by contrapositive

We’ll demonstrate proof techniques by proving the correctness and running time of algorithms

you’ve seen before.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 3 / 16



Quicksort review

Algorithm Quicksort

Input: array A of length n

1: if n ≤ 1 then
2: return A

3: end if
4: Pick some element p ∈ A as the pivot
5: Let L be the elements less than or equal to p, let G be the elements larger than p

6: L
′ ← Quicksort(L)

7: G
′ ← Quicksort(G )

8: return L
′�p�G ′

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 4 / 16



Strong Induction vs Weak Induction

Strong induction:

� Prove property holds for a base case

� e.g. Quicksort always returns a sorted array for input arrays of size n ≤ 1

� Assume inductive hypothesis, that property holds for all n ≤ k . Then show that property

holds for n = k + 1.
� e.g. Assume Quicksort always returns a sorted array for input arrays of size ≤ k . Show it

returns a sorted array for input arrays of size k + 1.
Weak induction:

� Prove property holds for a base case

� Assume inductive hypothesis, that property holds for n = k . Then show that property

holds for n = k + 1.
� e.g. Assume Quicksort always returns a sorted array for input arrays of size exactly k .

Show it returns a sorted array for input arrays of size k + 1.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 5 / 16



Strong Induction vs Weak Induction

Strong induction:

� Prove property holds for a base case

� e.g. Quicksort always returns a sorted array for input arrays of size n ≤ 1
� Assume inductive hypothesis, that property holds for all n ≤ k . Then show that property

holds for n = k + 1.
� e.g. Assume Quicksort always returns a sorted array for input arrays of size ≤ k . Show it

returns a sorted array for input arrays of size k + 1.

Weak induction:

� Prove property holds for a base case

� Assume inductive hypothesis, that property holds for n = k . Then show that property

holds for n = k + 1.
� e.g. Assume Quicksort always returns a sorted array for input arrays of size exactly k .

Show it returns a sorted array for input arrays of size k + 1.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 5 / 16



Strong Induction vs Weak Induction

Strong induction:

� Prove property holds for a base case

� e.g. Quicksort always returns a sorted array for input arrays of size n ≤ 1
� Assume inductive hypothesis, that property holds for all n ≤ k . Then show that property

holds for n = k + 1.
� e.g. Assume Quicksort always returns a sorted array for input arrays of size ≤ k . Show it

returns a sorted array for input arrays of size k + 1.
Weak induction:

� Prove property holds for a base case

� Assume inductive hypothesis, that property holds for n = k . Then show that property

holds for n = k + 1.
� e.g. Assume Quicksort always returns a sorted array for input arrays of size exactly k .

Show it returns a sorted array for input arrays of size k + 1.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 5 / 16



Strong Induction vs Weak Induction

Strong induction:

� Prove property holds for a base case

� e.g. Quicksort always returns a sorted array for input arrays of size n ≤ 1
� Assume inductive hypothesis, that property holds for all n ≤ k . Then show that property

holds for n = k + 1.
� e.g. Assume Quicksort always returns a sorted array for input arrays of size ≤ k . Show it

returns a sorted array for input arrays of size k + 1.
Weak induction:

� Prove property holds for a base case

� Assume inductive hypothesis, that property holds for n = k . Then show that property

holds for n = k + 1.
� e.g. Assume Quicksort always returns a sorted array for input arrays of size exactly k .

Show it returns a sorted array for input arrays of size k + 1.
Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 5 / 16



Correctness of Quicksort - (Strong) Inductive Proof

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Base case: n ≤ 1. Quicksort(A) returns A.

� Inductive step: Assume Quicksort(A) returns a sorted array for all A of length ≤ n. Show

it returns a sorted array for all A of length n + 1.� Pick pivot p ∈ A. Let L be the elements less than or equal to p, let G be the elements larger

than p.� L and G are of length ≤ n, so by inductive hypothesis, Quicksort(L) and Quicksort(G ) return

sorted arrays L
′
and G

′
.� Therefore L

′�p�G ′ is sorted.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 6 / 16



Correctness of Quicksort - (Strong) Inductive Proof

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Base case: n ≤ 1. Quicksort(A) returns A.

� Inductive step: Assume Quicksort(A) returns a sorted array for all A of length ≤ n. Show

it returns a sorted array for all A of length n + 1.� Pick pivot p ∈ A. Let L be the elements less than or equal to p, let G be the elements larger

than p.� L and G are of length ≤ n, so by inductive hypothesis, Quicksort(L) and Quicksort(G ) return

sorted arrays L
′
and G

′
.� Therefore L

′�p�G ′ is sorted.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 6 / 16



Correctness of Quicksort - (Strong) Inductive Proof

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Base case: n ≤ 1. Quicksort(A) returns A.

� Inductive step: Assume Quicksort(A) returns a sorted array for all A of length ≤ n. Show

it returns a sorted array for all A of length n + 1.

� Pick pivot p ∈ A. Let L be the elements less than or equal to p, let G be the elements larger

than p.� L and G are of length ≤ n, so by inductive hypothesis, Quicksort(L) and Quicksort(G ) return

sorted arrays L
′
and G

′
.� Therefore L

′�p�G ′ is sorted.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 6 / 16



Correctness of Quicksort - (Strong) Inductive Proof

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Base case: n ≤ 1. Quicksort(A) returns A.

� Inductive step: Assume Quicksort(A) returns a sorted array for all A of length ≤ n. Show

it returns a sorted array for all A of length n + 1.� Pick pivot p ∈ A. Let L be the elements less than or equal to p, let G be the elements larger

than p.

� L and G are of length ≤ n, so by inductive hypothesis, Quicksort(L) and Quicksort(G ) return

sorted arrays L
′
and G

′
.� Therefore L

′�p�G ′ is sorted.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 6 / 16



Correctness of Quicksort - (Strong) Inductive Proof

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Base case: n ≤ 1. Quicksort(A) returns A.

� Inductive step: Assume Quicksort(A) returns a sorted array for all A of length ≤ n. Show

it returns a sorted array for all A of length n + 1.� Pick pivot p ∈ A. Let L be the elements less than or equal to p, let G be the elements larger

than p.� L and G are of length ≤ n, so by inductive hypothesis, Quicksort(L) and Quicksort(G ) return

sorted arrays L
′
and G

′
.

� Therefore L
′�p�G ′ is sorted.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 6 / 16



Correctness of Quicksort - (Strong) Inductive Proof

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Base case: n ≤ 1. Quicksort(A) returns A.

� Inductive step: Assume Quicksort(A) returns a sorted array for all A of length ≤ n. Show

it returns a sorted array for all A of length n + 1.� Pick pivot p ∈ A. Let L be the elements less than or equal to p, let G be the elements larger

than p.� L and G are of length ≤ n, so by inductive hypothesis, Quicksort(L) and Quicksort(G ) return

sorted arrays L
′
and G

′
.� Therefore L

′�p�G ′ is sorted.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 6 / 16



Why Strong Induction?

� A weak inductive hypothesis assumes the desired property holds for n = k .

� A strong inductive hypothesis assumes the desired property holds for all n ≤ k .

� Quicksort recursively calls itself on L and G , which we don’t know the size of a priori

� In strong induction, we assume that Quicksort is correct for all arrays of size ≤ k , so

doesn’t matter what the exact size L and G are, because we know they are both ≤ k .

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 7 / 16



Why Strong Induction?

� A weak inductive hypothesis assumes the desired property holds for n = k .

� A strong inductive hypothesis assumes the desired property holds for all n ≤ k .

� Quicksort recursively calls itself on L and G , which we don’t know the size of a priori

� In strong induction, we assume that Quicksort is correct for all arrays of size ≤ k , so

doesn’t matter what the exact size L and G are, because we know they are both ≤ k .

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 7 / 16



Why Strong Induction?

� A weak inductive hypothesis assumes the desired property holds for n = k .

� A strong inductive hypothesis assumes the desired property holds for all n ≤ k .

� Quicksort recursively calls itself on L and G , which we don’t know the size of a priori

� In strong induction, we assume that Quicksort is correct for all arrays of size ≤ k , so

doesn’t matter what the exact size L and G are, because we know they are both ≤ k .

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 7 / 16



Correctness of Quicksort - Proof by Contradiction

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Assume there exists at least one array such that Quicksort does not return a sorted array.

Let A be the smallest such array and let n be the size of A.

� Note n ≥ 2.
� So Quicksort(A) picks a pivot element p ∈ A, defines L and G as the elements less than

or equal to p and the elements greater than p respectively, and recursively calls Quicksort

on L and G .

� By assumption that A is the smallest such array, L and G are sorted.

� Therefore L�p�G is sorted.

� Contradiction: A is not the smallest array such that Quicksort does not return a sorted

array.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 8 / 16



Correctness of Quicksort - Proof by Contradiction

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Assume there exists at least one array such that Quicksort does not return a sorted array.

Let A be the smallest such array and let n be the size of A.

� Note n ≥ 2.
� So Quicksort(A) picks a pivot element p ∈ A, defines L and G as the elements less than

or equal to p and the elements greater than p respectively, and recursively calls Quicksort

on L and G .

� By assumption that A is the smallest such array, L and G are sorted.

� Therefore L�p�G is sorted.

� Contradiction: A is not the smallest array such that Quicksort does not return a sorted

array.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 8 / 16



Correctness of Quicksort - Proof by Contradiction

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Assume there exists at least one array such that Quicksort does not return a sorted array.

Let A be the smallest such array and let n be the size of A.

� Note n ≥ 2.

� So Quicksort(A) picks a pivot element p ∈ A, defines L and G as the elements less than

or equal to p and the elements greater than p respectively, and recursively calls Quicksort

on L and G .

� By assumption that A is the smallest such array, L and G are sorted.

� Therefore L�p�G is sorted.

� Contradiction: A is not the smallest array such that Quicksort does not return a sorted

array.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 8 / 16



Correctness of Quicksort - Proof by Contradiction

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Assume there exists at least one array such that Quicksort does not return a sorted array.

Let A be the smallest such array and let n be the size of A.

� Note n ≥ 2.
� So Quicksort(A) picks a pivot element p ∈ A, defines L and G as the elements less than

or equal to p and the elements greater than p respectively, and recursively calls Quicksort

on L and G .

� By assumption that A is the smallest such array, L and G are sorted.

� Therefore L�p�G is sorted.

� Contradiction: A is not the smallest array such that Quicksort does not return a sorted

array.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 8 / 16



Correctness of Quicksort - Proof by Contradiction

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Assume there exists at least one array such that Quicksort does not return a sorted array.

Let A be the smallest such array and let n be the size of A.

� Note n ≥ 2.
� So Quicksort(A) picks a pivot element p ∈ A, defines L and G as the elements less than

or equal to p and the elements greater than p respectively, and recursively calls Quicksort

on L and G .

� By assumption that A is the smallest such array, L and G are sorted.

� Therefore L�p�G is sorted.

� Contradiction: A is not the smallest array such that Quicksort does not return a sorted

array.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 8 / 16



Correctness of Quicksort - Proof by Contradiction

Claim: Given an array A of length n, Quicksort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Assume there exists at least one array such that Quicksort does not return a sorted array.

Let A be the smallest such array and let n be the size of A.

� Note n ≥ 2.
� So Quicksort(A) picks a pivot element p ∈ A, defines L and G as the elements less than

or equal to p and the elements greater than p respectively, and recursively calls Quicksort

on L and G .

� By assumption that A is the smallest such array, L and G are sorted.

� Therefore L�p�G is sorted.

� Contradiction: A is not the smallest array such that Quicksort does not return a sorted

array.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 8 / 16



Direct Proof

A direct proof argues the conclusion of a claim directly from its assumptions.

For a statement of the form A⇒ B, a direct proof shows that B follows from the logical

implications of A.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 9 / 16



Direct Proof

A direct proof argues the conclusion of a claim directly from its assumptions.

For a statement of the form A⇒ B, a direct proof shows that B follows from the logical

implications of A.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 9 / 16



Quicksort Runtime - Direct Proof

Claim: Quicksort runs in time O(n2) in the worst case.

� Before making its two recursive calls, Quicksort compares every element of its input array

to the pivot, taking time ⇥(n).
� The worst case for runtime occurs when the pivot is the smallest or largest element of the

array.

� In this case, the array is partitioned into an array of size n − 1 and an array of size 0.

� This gives a recurrence T(n) = T(n − 1) +⇥(n), which has solution T(n) =⇥(n2).

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 10 / 16



Quicksort Runtime - Direct Proof

Claim: Quicksort runs in time O(n2) in the worst case.

� Before making its two recursive calls, Quicksort compares every element of its input array

to the pivot, taking time ⇥(n).

� The worst case for runtime occurs when the pivot is the smallest or largest element of the

array.

� In this case, the array is partitioned into an array of size n − 1 and an array of size 0.

� This gives a recurrence T(n) = T(n − 1) +⇥(n), which has solution T(n) =⇥(n2).

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 10 / 16



Quicksort Runtime - Direct Proof

Claim: Quicksort runs in time O(n2) in the worst case.

� Before making its two recursive calls, Quicksort compares every element of its input array

to the pivot, taking time ⇥(n).
� The worst case for runtime occurs when the pivot is the smallest or largest element of the

array.

� In this case, the array is partitioned into an array of size n − 1 and an array of size 0.

� This gives a recurrence T(n) = T(n − 1) +⇥(n), which has solution T(n) =⇥(n2).

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 10 / 16



Quicksort Runtime - Direct Proof

Claim: Quicksort runs in time O(n2) in the worst case.

� Before making its two recursive calls, Quicksort compares every element of its input array

to the pivot, taking time ⇥(n).
� The worst case for runtime occurs when the pivot is the smallest or largest element of the

array.

� In this case, the array is partitioned into an array of size n − 1 and an array of size 0.

� This gives a recurrence T(n) = T(n − 1) +⇥(n), which has solution T(n) =⇥(n2).

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 10 / 16



Quicksort Runtime - Direct Proof

Claim: Quicksort runs in time O(n2) in the worst case.

� Before making its two recursive calls, Quicksort compares every element of its input array

to the pivot, taking time ⇥(n).
� The worst case for runtime occurs when the pivot is the smallest or largest element of the

array.

� In this case, the array is partitioned into an array of size n − 1 and an array of size 0.

� This gives a recurrence T(n) = T(n − 1) +⇥(n), which has solution T(n) =⇥(n2).

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 10 / 16



Insertion Sort Review

Algorithm Insertion Sort

Input: array A of length n

1: for i ← 2 to n do
2: j ← i

3: while j > 1 and A[j ] < A[j − 1] do
4: Swap A[j ] and A[j − 1]
5: j ← j − 1
6: end while
7: end for

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 11 / 16



Proof by Loop Invariant

Proof by loop invariant is a proof technique that establishes some useful property that is true

throughout every loop of an iterative algorithm.

� Initialization: the property is true at the start of the loop.

� Maintenance: if the property is true at the beginning of an iteration, it is true at

beginning of the next iteration.

� Termination: when the loop terminates, the invariant holds and shows that the algorithm

is correct.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 12 / 16



Proof by Loop Invariant

Proof by loop invariant is a proof technique that establishes some useful property that is true

throughout every loop of an iterative algorithm.

� Initialization: the property is true at the start of the loop.

� Maintenance: if the property is true at the beginning of an iteration, it is true at

beginning of the next iteration.

� Termination: when the loop terminates, the invariant holds and shows that the algorithm

is correct.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 12 / 16



Proof by Loop Invariant

Proof by loop invariant is a proof technique that establishes some useful property that is true

throughout every loop of an iterative algorithm.

� Initialization: the property is true at the start of the loop.

� Maintenance: if the property is true at the beginning of an iteration, it is true at

beginning of the next iteration.

� Termination: when the loop terminates, the invariant holds and shows that the algorithm

is correct.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 12 / 16



Proof by Loop Invariant

Proof by loop invariant is a proof technique that establishes some useful property that is true

throughout every loop of an iterative algorithm.

� Initialization: the property is true at the start of the loop.

� Maintenance: if the property is true at the beginning of an iteration, it is true at

beginning of the next iteration.

� Termination: when the loop terminates, the invariant holds and shows that the algorithm

is correct.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 12 / 16



Correctness of Insertion Sort - Proof by Loop Invariant

Claim: Given an array A of length n, InsertionSort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Loop invariant: at iteration i , A[1, i − 1] contains all elements of the original input array

A[1, i − 1], and is sorted.

� Initialization - At the beginning of the first iteration i = 2, A[1] is sorted.
� Maintenance - In a single iteration, element A[i ] of the input Array is moved to the left

until it is no longer smaller than the element to its left, therefore at the beginning of the

next iteration, A[1, i ] is sorted and contains exactly the same elements as A[1, i ] from
the original input array.

� Termination - When the loop terminates, i = n and therefore A[1,n] is sorted and

contains exactly the same elements as A[1,n] from the original input array. Therefore

the original input array has been sorted.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 13 / 16



Correctness of Insertion Sort - Proof by Loop Invariant

Claim: Given an array A of length n, InsertionSort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Loop invariant: at iteration i , A[1, i − 1] contains all elements of the original input array

A[1, i − 1], and is sorted.

� Initialization - At the beginning of the first iteration i = 2, A[1] is sorted.
� Maintenance - In a single iteration, element A[i ] of the input Array is moved to the left

until it is no longer smaller than the element to its left, therefore at the beginning of the

next iteration, A[1, i ] is sorted and contains exactly the same elements as A[1, i ] from
the original input array.

� Termination - When the loop terminates, i = n and therefore A[1,n] is sorted and

contains exactly the same elements as A[1,n] from the original input array. Therefore

the original input array has been sorted.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 13 / 16



Correctness of Insertion Sort - Proof by Loop Invariant

Claim: Given an array A of length n, InsertionSort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Loop invariant: at iteration i , A[1, i − 1] contains all elements of the original input array

A[1, i − 1], and is sorted.

� Initialization - At the beginning of the first iteration i = 2, A[1] is sorted.
� Maintenance - In a single iteration, element A[i ] of the input Array is moved to the left

until it is no longer smaller than the element to its left, therefore at the beginning of the

next iteration, A[1, i ] is sorted and contains exactly the same elements as A[1, i ] from
the original input array.

� Termination - When the loop terminates, i = n and therefore A[1,n] is sorted and

contains exactly the same elements as A[1,n] from the original input array. Therefore

the original input array has been sorted.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 13 / 16



Correctness of Insertion Sort - Proof by Loop Invariant

Claim: Given an array A of length n, InsertionSort(A) returns an array with all elements of A

sorted from least to greatest.

Proof:

� Loop invariant: at iteration i , A[1, i − 1] contains all elements of the original input array

A[1, i − 1], and is sorted.

� Initialization - At the beginning of the first iteration i = 2, A[1] is sorted.
� Maintenance - In a single iteration, element A[i ] of the input Array is moved to the left

until it is no longer smaller than the element to its left, therefore at the beginning of the

next iteration, A[1, i ] is sorted and contains exactly the same elements as A[1, i ] from
the original input array.

� Termination - When the loop terminates, i = n and therefore A[1,n] is sorted and

contains exactly the same elements as A[1,n] from the original input array. Therefore

the original input array has been sorted.

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 13 / 16



Proof by Contrapositive

Proof by contrapositive is a proof technique for conditional statements. That is, statements of

the form “If A, then B.”

It relies on the fact that A⇒ B is logically equivalent to ¬B ⇒ ¬A.

To prove A⇒ B by contrapositive, we show that if the negation of the conclusion is true

(¬B), then the negation of the hypothesis is true (¬A).

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 14 / 16



Proof by Contrapositive

Proof by contrapositive is a proof technique for conditional statements. That is, statements of

the form “If A, then B.”

It relies on the fact that A⇒ B is logically equivalent to ¬B ⇒ ¬A.

To prove A⇒ B by contrapositive, we show that if the negation of the conclusion is true

(¬B), then the negation of the hypothesis is true (¬A).

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 14 / 16



Proof by Contrapositive

Proof by contrapositive is a proof technique for conditional statements. That is, statements of

the form “If A, then B.”

It relies on the fact that A⇒ B is logically equivalent to ¬B ⇒ ¬A.

To prove A⇒ B by contrapositive, we show that if the negation of the conclusion is true

(¬B), then the negation of the hypothesis is true (¬A).

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 14 / 16



Correctness of (one iteration of) Insertion Sort - Proof by Contrapositive

Claim: If the i th iteration of the inner WHILE loop

terminates with counter value j for j > 1, then element

A[i ] of the original input array is greater than or equal

to A[j − 1].

� A: The i th iteration of the inner WHILE loop

terminates with counter value j for j > 1
� B: Element A[i ] of the original input array is

greater than or equal to A[j − 1]
� Want to prove A⇒ B

� So will argue that if element A[i ] of the original

input array is less than A[j − 1], then the i th

iteration of the inner WHILE loop will not

terminate with counter value j for j > 1.

Algorithm Insertion Sort

Input: array A of length n

1: for i ← 2 to n do
2: j ← i

3: while j > 1 and A[j ] < A[j − 1]
do

4: Swap A[j ] and A[j − 1]
5: j ← j − 1
6: end while
7: end for

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 15 / 16



Correctness of (one iteration of) Insertion Sort - Proof by Contrapositive

Claim: If the i th iteration of the inner WHILE loop

terminates with counter value j for j > 1, then element

A[i ] of the original input array is greater than or equal

to A[j − 1].
� A: The i th iteration of the inner WHILE loop

terminates with counter value j for j > 1

� B: Element A[i ] of the original input array is

greater than or equal to A[j − 1]
� Want to prove A⇒ B

� So will argue that if element A[i ] of the original

input array is less than A[j − 1], then the i th

iteration of the inner WHILE loop will not

terminate with counter value j for j > 1.

Algorithm Insertion Sort

Input: array A of length n

1: for i ← 2 to n do
2: j ← i

3: while j > 1 and A[j ] < A[j − 1]
do

4: Swap A[j ] and A[j − 1]
5: j ← j − 1
6: end while
7: end for

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 15 / 16



Correctness of (one iteration of) Insertion Sort - Proof by Contrapositive

Claim: If the i th iteration of the inner WHILE loop

terminates with counter value j for j > 1, then element

A[i ] of the original input array is greater than or equal

to A[j − 1].
� A: The i th iteration of the inner WHILE loop

terminates with counter value j for j > 1
� B: Element A[i ] of the original input array is

greater than or equal to A[j − 1]

� Want to prove A⇒ B

� So will argue that if element A[i ] of the original

input array is less than A[j − 1], then the i th

iteration of the inner WHILE loop will not

terminate with counter value j for j > 1.

Algorithm Insertion Sort

Input: array A of length n

1: for i ← 2 to n do
2: j ← i

3: while j > 1 and A[j ] < A[j − 1]
do

4: Swap A[j ] and A[j − 1]
5: j ← j − 1
6: end while
7: end for

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 15 / 16



Correctness of (one iteration of) Insertion Sort - Proof by Contrapositive

Claim: If the i th iteration of the inner WHILE loop

terminates with counter value j for j > 1, then element

A[i ] of the original input array is greater than or equal

to A[j − 1].
� A: The i th iteration of the inner WHILE loop

terminates with counter value j for j > 1
� B: Element A[i ] of the original input array is

greater than or equal to A[j − 1]
� Want to prove A⇒ B

� So will argue that if element A[i ] of the original

input array is less than A[j − 1], then the i th

iteration of the inner WHILE loop will not

terminate with counter value j for j > 1.

Algorithm Insertion Sort

Input: array A of length n

1: for i ← 2 to n do
2: j ← i

3: while j > 1 and A[j ] < A[j − 1]
do

4: Swap A[j ] and A[j − 1]
5: j ← j − 1
6: end while
7: end for

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 15 / 16



Correctness of (one iteration of) Insertion Sort - Proof by Contrapositive

Claim: If the i th iteration of the inner WHILE loop

terminates with counter value j for j > 1, then element

A[i ] of the original input array is greater than or equal

to A[j − 1].
� A: The i th iteration of the inner WHILE loop

terminates with counter value j for j > 1
� B: Element A[i ] of the original input array is

greater than or equal to A[j − 1]
� Want to prove A⇒ B

� So will argue that if element A[i ] of the original

input array is less than A[j − 1], then the i th

iteration of the inner WHILE loop will not

terminate with counter value j for j > 1.

Algorithm Insertion Sort

Input: array A of length n

1: for i ← 2 to n do
2: j ← i

3: while j > 1 and A[j ] < A[j − 1]
do

4: Swap A[j ] and A[j − 1]
5: j ← j − 1
6: end while
7: end for

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 15 / 16



Correctness of (one iteration of) Insertion Sort - Proof by Contrapositive

Claim: If element A[i ] of the original input array is less

than A[j −1], then the i th iteration of the inner WHILE

loop will not terminate with counter value j for j > 1.

� In order for the loop to terminate at counter value

j > 1, it must hold that A[j ] ≥ A[j − 1].
� Note that inside the WHILE loop, A[j ] = A[i ] of

the original input array. Therefore if

A[i ] = A[j ] < A[j − 1], the loop will not terminate

with counter value j .

Algorithm Insertion Sort

Input: array A of length n

1: for i ← 2 to n do
2: j ← i

3: while j > 1 and A[j ] < A[j − 1]
do

4: Swap A[j ] and A[j − 1]
5: j ← j − 1
6: end while
7: end for

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 16 / 16



Correctness of (one iteration of) Insertion Sort - Proof by Contrapositive

Claim: If element A[i ] of the original input array is less

than A[j −1], then the i th iteration of the inner WHILE

loop will not terminate with counter value j for j > 1.
� In order for the loop to terminate at counter value

j > 1, it must hold that A[j ] ≥ A[j − 1].

� Note that inside the WHILE loop, A[j ] = A[i ] of
the original input array. Therefore if

A[i ] = A[j ] < A[j − 1], the loop will not terminate

with counter value j .

Algorithm Insertion Sort

Input: array A of length n

1: for i ← 2 to n do
2: j ← i

3: while j > 1 and A[j ] < A[j − 1]
do

4: Swap A[j ] and A[j − 1]
5: j ← j − 1
6: end while
7: end for

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 16 / 16



Correctness of (one iteration of) Insertion Sort - Proof by Contrapositive

Claim: If element A[i ] of the original input array is less

than A[j −1], then the i th iteration of the inner WHILE

loop will not terminate with counter value j for j > 1.
� In order for the loop to terminate at counter value

j > 1, it must hold that A[j ] ≥ A[j − 1].
� Note that inside the WHILE loop, A[j ] = A[i ] of

the original input array. Therefore if

A[i ] = A[j ] < A[j − 1], the loop will not terminate

with counter value j .

Algorithm Insertion Sort

Input: array A of length n

1: for i ← 2 to n do
2: j ← i

3: while j > 1 and A[j ] < A[j − 1]
do

4: Swap A[j ] and A[j − 1]
5: j ← j − 1
6: end while
7: end for

Jessica Sorrell Lecture 3: Intro to proofs for algorithms September 2, 2025 16 / 16


