Lecture 3: Intro to proofs for algorithms

Michael Dinitz

September 2, 2025 601.433/633 Introduction to Algorithms (Slides by Jessica Sorrell)

1/16

Michael Dinitz

Announcements

- Grading policy change for quizzes: drop two lowest scores.
- First homework released today!
 - ▶ Due by Tuesday Sep 16, so deadline is Monday Sep 15, 11:59pm.
- Course staff change: Nate Robinson no longer TA.
- ▶ More office hours on course webpage / calendar, including Yan Zhong's recitation-like office hours (Wed 6-7pm, Malone 107)

Today

Discuss common proof techniques for algorithms.

- Inductive arguments (weak, strong)
- Proof by contradiction
- Direct proof
- Loop invariant
- Proof by contrapositive

We'll demonstrate proof techniques by proving the correctness and running time of sorting algorithms you've seen before.

Quicksort review

Algorithm Quicksort

Input: array \boldsymbol{A} of length \boldsymbol{n}

- 1: if $n \le 1$ then
- 2: return A
- 3: end if
- 4: Pick some element $p \in A$ as the pivot
- 5: Let \boldsymbol{L} be the elements less than or equal to \boldsymbol{p} , let \boldsymbol{G} be the elements larger than \boldsymbol{p}
- 6: $L' \leftarrow Quicksort(L)$
- 7: $G' \leftarrow Quicksort(G)$
- 8: return L'||p||G'

Strong induction:

- Prove property holds for a base case
- e.g., Quicksort always returns a sorted array for input arrays of size $n \le 1$

Strong induction:

- Prove property holds for a base case
- e.g., Quicksort always returns a sorted array for input arrays of size $n \le 1$
- Assume inductive hypothesis, that property holds for all $n \le k$. Then show that property holds for n = k + 1.
- e.g. Assume Quicksort always returns a sorted array for input arrays of size $\leq k$. Show it returns a sorted array for input arrays of size k + 1.

Strong induction:

- Prove property holds for a base case
- e.g., Quicksort always returns a sorted array for input arrays of size $n \le 1$
- Assume inductive hypothesis, that property holds for all $n \le k$. Then show that property holds for n = k + 1.
- e.g. Assume Quicksort always returns a sorted array for input arrays of size $\leq k$. Show it returns a sorted array for input arrays of size k + 1.

Weak induction:

Prove property holds for a base case

Strong induction:

- Prove property holds for a base case
- e.g., Quicksort always returns a sorted array for input arrays of size $n \le 1$
- Assume inductive hypothesis, that property holds for all $n \le k$. Then show that property holds for n = k + 1.
- e.g. Assume Quicksort always returns a sorted array for input arrays of size $\leq k$. Show it returns a sorted array for input arrays of size k + 1.

Weak induction:

- Prove property holds for a base case
- Assume inductive hypothesis, that property holds for n = k. Then show that property holds for n = k + 1.
- e.g. Assume Quicksort always returns a sorted array for input arrays of size exactly k. Show it returns a sorted array for input arrays of size k + 1.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

Proof:

▶ Base case: $n \le 1$.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

Proof:

▶ Base case: $n \le 1$. Quicksort(A) returns A.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

Proof:

▶ Base case: $n \le 1$. Quicksort(A) returns A. \checkmark

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

- ▶ Base case: $n \le 1$. Quicksort(A) returns A. \checkmark
- ▶ Inductive step: Assume Quicksort(\boldsymbol{A}) returns a sorted array for all \boldsymbol{A} of length $\leq \boldsymbol{n}$. Show it returns a sorted array for all \boldsymbol{A} of length $\boldsymbol{n} + \boldsymbol{1}$.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

- ▶ Base case: $n \le 1$. Quicksort(A) returns A. \checkmark
- ▶ Inductive step: Assume Quicksort(\boldsymbol{A}) returns a sorted array for all \boldsymbol{A} of length $\leq \boldsymbol{n}$. Show it returns a sorted array for all \boldsymbol{A} of length $\boldsymbol{n} + \boldsymbol{1}$.
 - Pick pivot $p \in A$. Let L be the elements less than or equal to p, let G be the elements larger than p.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

- ▶ Base case: $n \le 1$. Quicksort(A) returns A. \checkmark
- ▶ Inductive step: Assume Quicksort(\boldsymbol{A}) returns a sorted array for all \boldsymbol{A} of length $\leq \boldsymbol{n}$. Show it returns a sorted array for all \boldsymbol{A} of length $\boldsymbol{n} + \boldsymbol{1}$.
 - Pick pivot $p \in A$. Let L be the elements less than or equal to p, let G be the elements larger than p.
 - ▶ L and G are of length $\leq n$, so by inductive hypothesis, Quicksort(L) and Quicksort(G) return sorted arrays L' and G'.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

- ▶ Base case: $n \le 1$. Quicksort(A) returns A. \checkmark
- ▶ Inductive step: Assume Quicksort(\boldsymbol{A}) returns a sorted array for all \boldsymbol{A} of length $\leq \boldsymbol{n}$. Show it returns a sorted array for all \boldsymbol{A} of length $\boldsymbol{n} + \boldsymbol{1}$.
 - Pick pivot $p \in A$. Let L be the elements less than or equal to p, let G be the elements larger than p.
 - ▶ L and G are of length $\leq n$, so by inductive hypothesis, Quicksort(L) and Quicksort(G) return sorted arrays L' and G'.
 - ▶ Therefore L'||p||G' is sorted.

Why Strong Induction?

A weak inductive hypothesis assumes the desired property holds for n = k.

Michael Dinitz Lecture 3: Intro to proofs for algorithms

Why Strong Induction?

- ightharpoonup A weak inductive hypothesis assumes the desired property holds for n = k.
- ▶ A strong inductive hypothesis assumes the desired property holds for all $n \le k$.

Why Strong Induction?

- A weak inductive hypothesis assumes the desired property holds for n = k.
- ▶ A strong inductive hypothesis assumes the desired property holds for all $n \le k$.
- ightharpoonup Quicksort recursively calls itself on L and G, which we don't know the size of a priori
- ▶ In strong induction, we assume that Quicksort is correct for all arrays of size $\leq k$, so doesn't matter what the exact size L and G are, because we know they are both $\leq k$.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

Proof:

Assume there exists at least one array such that Quicksort does not return a sorted array. Let **A** be the smallest such array and let **n** be the size of **A**.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

- Assume there exists at least one array such that Quicksort does not return a sorted array. Let **A** be the smallest such array and let **n** be the size of **A**.
- ▶ Note $n \ge 2$.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

- Assume there exists at least one array such that Quicksort does not return a sorted array. Let **A** be the smallest such array and let **n** be the size of **A**.
- ▶ Note $n \ge 2$.
- So Quicksort(A) picks a pivot element $p \in A$, defines L and G as the elements less than or equal to p and the elements greater than p respectively, and recursively calls Quicksort on L and G.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

- Assume there exists at least one array such that Quicksort does not return a sorted array. Let **A** be the smallest such array and let **n** be the size of **A**.
- ▶ Note $n \ge 2$.
- So Quicksort(A) picks a pivot element $p \in A$, defines L and G as the elements less than or equal to p and the elements greater than p respectively, and recursively calls Quicksort on L and G.
- ▶ By assumption that **A** is the smallest such array, **L** and **G** are sorted.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , Quicksort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

- Assume there exists at least one array such that Quicksort does not return a sorted array. Let **A** be the smallest such array and let **n** be the size of **A**.
- Note $n \ge 2$.
- So Quicksort(A) picks a pivot element $p \in A$, defines L and G as the elements less than or equal to p and the elements greater than p respectively, and recursively calls Quicksort on L and G.
- ▶ By assumption that **A** is the smallest such array, **L** and **G** are sorted.
- ▶ Therefore L||p||G is sorted.
- ▶ Contradiction: **A** is not the smallest array such that Quicksort does not return a sorted array.

Direct Proof

A direct proof argues the conclusion of a claim *directly* from its assumptions.

Direct Proof

A direct proof argues the conclusion of a claim *directly* from its assumptions.

For a statement of the form $A \Rightarrow B$, a direct proof shows that B follows from the logical implications of A.

Claim: Quicksort runs in time $O(n^2)$ in the worst case.

Claim: Quicksort runs in time $O(n^2)$ in the worst case.

• Before making its two recursive calls, Quicksort compares every element of its input array to the pivot, taking time $\Theta(n)$.

Claim: Quicksort runs in time $O(n^2)$ in the worst case.

- **B**efore making its two recursive calls, Quicksort compares every element of its input array to the pivot, taking time $\Theta(n)$.
- ▶ The worst case for runtime occurs when the pivot is the smallest or largest element of the array. (slightly informal)

Claim: Quicksort runs in time $O(n^2)$ in the worst case.

- Before making its two recursive calls, Quicksort compares every element of its input array to the pivot, taking time $\Theta(n)$.
- ▶ The worst case for runtime occurs when the pivot is the smallest or largest element of the array. (slightly informal)

$$T(n) = T(|L|) + T(|G|) + \Theta(n) = T(|L|) + T(n-1-|L|) + \Theta(n)$$

$$\leq T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n)$$

Claim: Quicksort runs in time $O(n^2)$ in the worst case.

- **B**efore making its two recursive calls, Quicksort compares every element of its input array to the pivot, taking time $\Theta(n)$.
- The worst case for runtime occurs when the pivot is the smallest or largest element of the array. (slightly informal)

$$T(n) = T(|L|) + T(|G|) + \Theta(n) = T(|L|) + T(n-1-|L|) + \Theta(n)$$

$$\leq T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n)$$

• Solve: $T(n) = \Theta(n^2)$

Insertion Sort Review

Algorithm Insertion Sort

Input: array \boldsymbol{A} of length \boldsymbol{n}

- 1: for $i \leftarrow 2$ to n do
- 2: **j ← i**
- 3: while j > 1 and A[j] < A[j-1] do
- 4: Swap $\boldsymbol{A}[\boldsymbol{j}]$ and $\boldsymbol{A}[\boldsymbol{j}-\boldsymbol{1}]$
- 5: $j \leftarrow j 1$
- 6: end while
- 7: end for

Proof by Loop Invariant (induction)

Proof by loop invariant is a proof technique that establishes some useful property that is true throughout every loop of an iterative algorithm.

▶ Initialization: the property is true at the start of the loop.

Proof by Loop Invariant (induction)

Proof by loop invariant is a proof technique that establishes some useful property that is true throughout every loop of an iterative algorithm.

- Initialization: the property is true at the start of the loop.
- Maintenance: if the property is true at the beginning of an iteration, it is true at beginning of the next iteration.

Proof by Loop Invariant (induction)

Proof by loop invariant is a proof technique that establishes some useful property that is true throughout every loop of an iterative algorithm.

- Initialization: the property is true at the start of the loop.
- ▶ Maintenance: if the property is true at the beginning of an iteration, it is true at beginning of the next iteration.
- ▶ Termination: when the loop terminates, the invariant holds and shows that the algorithm is correct.

Proof by Loop Invariant (induction)

Proof by loop invariant is a proof technique that establishes some useful property that is true throughout every loop of an iterative algorithm.

- Initialization: the property is true at the start of the loop.
- Maintenance: if the property is true at the beginning of an iteration, it is true at beginning of the next iteration.
- ▶ Termination: when the loop terminates, the invariant holds and shows that the algorithm is correct.

Just induction on time!

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , InsertionSort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , InsertionSort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

Proof:

Loop invariant: at iteration i, A[1, i-1] contains all elements of the original input array A[1, i-1], and is sorted.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , InsertionSort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

Proof:

- Loop invariant: at iteration i, A[1, i-1] contains all elements of the original input array A[1, i-1], and is sorted.
- Initialization At the beginning of the first iteration i = 2, A[1] is sorted.
- Maintenance In a single iteration, element A[i] of the input Array is moved to the left until it is no longer smaller than the element to its left, therefore at the beginning of the next iteration, A[1,i] is sorted and contains exactly the same elements as A[1,i] from the original input array.

Claim: Given an array \boldsymbol{A} of length \boldsymbol{n} , InsertionSort(\boldsymbol{A}) returns an array with all elements of \boldsymbol{A} sorted from least to greatest.

Proof:

- Loop invariant: at iteration i, A[1, i-1] contains all elements of the original input array A[1, i-1], and is sorted.
- Initialization At the beginning of the first iteration i = 2, A[1] is sorted.
- Maintenance In a single iteration, element A[i] of the input Array is moved to the left until it is no longer smaller than the element to its left, therefore at the beginning of the next iteration, A[1,i] is sorted and contains exactly the same elements as A[1,i] from the original input array.
- ▶ Termination When the loop terminates, i = n and therefore A[1, n] is sorted and contains exactly the same elements as A[1, n] from the original input array. Therefore the original input array has been sorted.

Proof by Contrapositive

Proof by contrapositive is a proof technique for conditional statements. That is, statements of the form "If A, then B."

Proof by Contrapositive

Proof by contrapositive is a proof technique for conditional statements. That is, statements of the form "If A, then B."

It relies on the fact that $A \Rightarrow B$ is logically equivalent to $\neg B \Rightarrow \neg A$.

Proof by Contrapositive

Proof by contrapositive is a proof technique for conditional statements. That is, statements of the form "If A, then B."

It relies on the fact that $A \Rightarrow B$ is logically equivalent to $\neg B \Rightarrow \neg A$.

To prove $A \Rightarrow B$ by contrapositive, we show that if the negation of the conclusion is true $(\neg B)$, then the negation of the hypothesis is true $(\neg A)$.

Claim: If the *i*th iteration of the inner WHILE loop terminates with counter value j for j > 1, then element A[i] of the original input array is greater than or equal to A[j-1].

Claim: If the *i*th iteration of the inner WHILE loop terminates with counter value j for j > 1, then element A[i] of the original input array is greater than or equal to A[j-1].

▶ **A**: The **i**th iteration of the inner WHILE loop terminates with counter value **j** for **j** > **1**

Claim: If the *i*th iteration of the inner WHILE loop terminates with counter value j for j > 1, then element A[i] of the original input array is greater than or equal to A[j-1].

- ▶ **A**: The **i**th iteration of the inner WHILE loop terminates with counter value **j** for **j** > **1**
- ▶ B: Element A[i] of the original input array is greater than or equal to A[i - 1]

Claim: If the *i*th iteration of the inner WHILE loop terminates with counter value j for j > 1, then element A[i] of the original input array is greater than or equal to A[j-1].

- ▶ **A**: The **i**th iteration of the inner WHILE loop terminates with counter value **j** for **j** > **1**
- ▶ B: Element A[i] of the original input array is greater than or equal to A[i - 1]
- ▶ Want to prove $A \Rightarrow B$

Claim: If the *i*th iteration of the inner WHILE loop terminates with counter value i for i > 1, then element A[i] of the original input array is greater than or equal to A[i-1].

- ▶ **A**: The **i**th iteration of the inner WHILE loop terminates with counter value i for i > 1
- **B**: Element A[i] of the original input array is greater than or equal to A[i-1]
- Want to prove $A \Rightarrow B$
- ▶ So will argue that if element **A[i]** of the original input array is less than A[i-1], then the ith iteration of the inner WHILE loop will not terminate with counter value i for i > 1.

Algorithm Insertion Sort Input: array \boldsymbol{A} of length \boldsymbol{n}

```
1: for i \leftarrow 2 to n do
   j ← i
3:
     while j > 1 and A[j] < A[j-1]
     do
       Swap A[j] and A[j-1]
```

- 5: $i \leftarrow i - 1$ end while
- 7: end for

Claim: If element A[i] of the original input array is less than A[j-1], then the ith iteration of the inner WHILE loop will not terminate with counter value j for j > 1.

Claim: If element A[i] of the original input array is less than A[j-1], then the ith iteration of the inner WHILE loop will not terminate with counter value j for j > 1.

In order for the loop to terminate at counter value j > 1, it must hold that $A[j] \ge A[j-1]$.

Claim: If element A[i] of the original input array is less than A[j-1], then the ith iteration of the inner WHILE loop will not terminate with counter value j for j > 1.

- In order for the loop to terminate at counter value j > 1, it must hold that $A[j] \ge A[j-1]$.
- Note that inside the WHILE loop, A[j] = A[i] of the original input array. Therefore if A[i] = A[j] < A[j − 1], the loop will not terminate with counter value j.

Algorithm Insertion Sort Input: array **A** of length **n**

```
    for i ← 2 to n do
    j ← i
    while j > 1 and A[j] < A[j-1] do</li>
    Swap A[j] and A[j-1]
    j ← j-1
    end while
```