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Intro and Problem Definition

Last time: sorting in expected O(nlog n) time (randomized quicksort)

> Should already know (from Data Structures) deterministic O(nlog n) algorithms for
sorting (mergesort, heapsort)

Today: two related problems
> Median: Given array A of length n, find the median: [n/2]nd smallest element.

> Selection: Given array A of length n and k e [n] ={1,2,...,n}, find k'th smallest
element.
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Intro and Problem Definition

Last time: sorting in expected O(nlog n) time (randomized quicksort)
> Should already know (from Data Structures) deterministic O(nlog n) algorithms for

sorting (mergesort, heapsort)

Today: two related problems
> Median: Given array A of length n, find the median: [n/2]nd smallest element.

> Selection: Given array A of length n and k e [n] ={1,2,...,n}, find k'th smallest

element.

Can solve both in O(nlog n) time via sorting. Faster?

Jessica Sorrell Lecture 5 September 9, 2025

2/13



Jessica Sorrell

Lecture 5

September 9, 2025

3/13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n:
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.

k=0(1) or k=n-0(1):
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k=0(1) or k=n-0(1): keep track of k smallest or n - k largest. O(n) time.
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k=0(1) or k=n-0(1): keep track of k smallest or n - k largest. O(n) time.

Does this work when k = n[27
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k=0(1) or k=n-0(1): keep track of k smallest or n - k largest. O(n) time.

Does this work when k = n[27

> Need to keep track of n/2 smallest.

Jessica Sorrell Lecture 5 September 9, 2025 3/13



Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k=0(1) or k=n-0(1): keep track of k smallest or n - k largest. O(n) time.

Does this work when k = n[27

> Need to keep track of n/2 smallest.

» When scanning, see an element, need to determine if one of k smallest. If yes, remove
previous max of the n/2 we've been keeping track of.

> Not easy to do! Foreshadow: would need to use a heap. ©(log n)-worst case time.
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Warmup

k = 1: Scan through array, keeping track of smallest. O(n) time.
k = n: Scan through array, keeping track of largest. O(n) time.
k=0(1) or k=n-0(1): keep track of k smallest or n - k largest. O(n) time.

Does this work when k = n[27

> Need to keep track of n/2 smallest.

» When scanning, see an element, need to determine if one of k smallest. If yes, remove
previous max of the n/2 we've been keeping track of.

> Not easy to do! Foreshadow: would need to use a heap. ©(log n)-worst case time.

> ©(nlog n) worst-case time.
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A| =1, return the element.
2. Pick a pivot element p uniformly at random from A.
3. Compare each element of A to p, creating subarrays L of elements less than p and G of

elements greater than p.
4. 41 If|L|=k-1:
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A| =1, return the element.
2. Pick a pivot element p uniformly at random from A.

3. Compare each element of A to p, creating subarrays L of elements less than p and G of
elements greater than p.

4. 4.1 If |L| = k-1: return p.
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A| =1, return the element.
2. Pick a pivot element p uniformly at random from A.
3. Compare each element of A to p, creating subarrays L of elements less than p and G of

elements greater than p.

4. 4.1 If |L| = k-1: return p.
4.2 if |[L| > k-1:
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A| =1, return the element.
2. Pick a pivot element p uniformly at random from A.
3. Compare each element of A to p, creating subarrays L of elements less than p and G of

elements greater than p.

4. 4.1 If |L| = k-1: return p.
4.2 if |L| > k - 1: return R-Quickselect(L, k).
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A| =1, return the element.
2. Pick a pivot element p uniformly at random from A.
3. Compare each element of A to p, creating subarrays L of elements less than p and G of

elements greater than p.

4. 4.1 If |L| = k-1: return p.
4.2 if |L| > k - 1: return R-Quickselect(L, k).
43 If |L| < k-1:
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(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

R-Quickselect(A, k):
1. If |A| =1, return the element.
2. Pick a pivot element p uniformly at random from A.
3. Compare each element of A to p, creating subarrays L of elements less than p and G of

elements greater than p.

4. 4.1 If |L| = k-1: return p.
4.2 if |L| > k - 1: return R-Quickselect(L, k).
4.3 If |[L| < k-1: return R-Quickselect(G, k - |L| - 1).
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Quickselect: Correctness

Sketch here: good exercise to do at home!
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Quickselect: Correctness

Sketch here: good exercise to do at home!

Prove by induction (“loop invariant™) that on any call to R-Quickselect(X, a), the element
we're looking for is a'th smallest of X.

> Base case: first call to R-Quickselect(A, k). Correct by definition.

> Inductive case: suppose was true for call R-Quickselect(Y, b).
> |f we return element: correct
> |f we recurse on L: correct
> |f we recurse on G: correct
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Quickselect: Running Time
Intuition:
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Quickselect: Running Time

Intuition:
» Random pivot should be “near middle”, so splits array “approximately in half".
» O(log n) recursive calls, but each one on an array of half the size

= T(n)=T(n/2) +cn = O(n) time ——_ _
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Quickselect: Running Time
Intuition:
» Random pivot should be “near middle”, so splits array “approximately in half".

» O(log n) recursive calls, but each one on an array of half the size
= T(n)=T(n/2) +cn = O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
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Quickselect: Running Time
Intuition:
» Random pivot should be “near middle”, so splits array “approximately in half".

» O(log n) recursive calls, but each one on an array of half the size
= T(n)=T(n/2) +cn = O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
» Splitting around pivot: n -1 comparisons
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Quickselect: Running Time
Intuition:
» Random pivot should be “near middle”, so splits array “approximately in half".

» O(log n) recursive calls, but each one on an array of half the size
= T(n)=T(n/2) +cn = O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
» Splitting around pivot: n -1 comparisons
» Recurse on either L or G == recursion costs at most

max(T(|L]), T(|G])) = T(max(|L[,|G])).
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Quickselect: Running Time
Intuition:
» Random pivot should be “near middle”, so splits array “approximately in half".

» O(log n) recursive calls, but each one on an array of half the size
= T(n)=T(n/2) +cn = O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
» Splitting around pivot: n -1 comparisons
» Recurse on either L or G == recursion costs at most
max (T (|L]), T(|G])) = T (max(|L],|G])).
> |L|,|G| distributed uniformly among [0, n-1].
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Quickselect: Running Time
Intuition:
» Random pivot should be “near middle”, so splits array “approximately in half".

» O(log n) recursive calls, but each one on an array of half the size
= T(n)=T(n/2) +cn = O(n) time

Formalize this. Let T(n) be expected # comparisons on array of size n.
» Splitting around pivot: n -1 comparisons
» Recurse on either L or G == recursion costs at most

max(T(IL)), T(IG])) = T(max(L}, |G])). £ [%]- 2\1 %)

> |L|,|G]| distributed uniformly among [0, n-1].

n-1 1
T(n)<(n-1)+ Z(:) T(max(i,n-i-1))
n/2- 1
<(n-1)+ Z T(n—l—1)+ Z T()—(n 1)+— Z T (i)

i= n/2 n ;- n/2
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Quickselect: Running Time |l
Want to solve recurrence relation T(n) < (n-1) + % Z'f:/z T(i).
Guess and check: T(n) <4n.
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Quickselect: Running Time I
Want to solve recurrence relation T(n) < (n-1) + =D n/2 T(i).
Guess and check: T(n) <4n.

T(n) < (n- 1)+— Z 4i=(n-1)+4.— Z i

i=n/2 n_npn
n-1 n/2 1

= (n-1)+4. _(z,_ >

C(n-1)+4 n("("2 1) ("'/2)("/2 1)
S(n—1)+4-((n—1)—n/22 1)

s(n—1)+4(:%n)s4n.
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Deterministic Version

Intuition:
» Randomization worked because it got us a “reasonably good” pivot.
> Simple deterministic pivot (first element, last element, etc.) bad because might not split
array well.
» Deterministically find a pivot that's “close” to the middle?
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Deterministic Version

Intuition:
» Randomization worked because it got us a “reasonably good” pivot.
> Simple deterministic pivot (first element, last element, etc.) bad because might not split
array well.
» Deterministically find a pivot that's “close” to the middle?

Median-of-medians:
> Split A into n/5 groups of 5 elements each.
» Compute median of each group.
> Let p be the median of the n/5 medians
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Deterministic Version

Intuition:
» Randomization worked because it got us a “reasonably good” pivot.
> Simple deterministic pivot (first element, last element, etc.) bad because might not split
array well.
» Deterministically find a pivot that's “close” to the middle?

Median-of-medians:
> Split A into n/5 groups of 5 elements each.
» Compute median of each group.
> Let p be the median of the n/5 medians

Want to claim: p is a good pivot, and can find p efficiently.
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Median-of-Medians is good pivot
Theorem J

|L| and |G| are both at most Tn[/10 when p is median of medians.
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Median-of-Medians is good pivot

Theorem
|L| and |G| are both at most Tn[/10 when p is median of medians. J

Let B be a group (of b elements), m median of B: I U e
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Median-of-Medians is good pivot
Theorem J

|L| and |G| are both at most Tn[10 when p is median of medians.

Let B be a group (of b elements), m median of B: I U e

> If m < p: at least three elements of B (m and two smaller) are in L
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Median-of-Medians is good pivot
Theorem J

|L| and |G| are both at most Tn[10 when p is median of medians.

Let B be a group (of b elements), m median of B: I U e

> If m < p: at least three elements of B (m and two smaller) are in L
> If m> p: at least three elements of B (m and two larger) are in G
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Median-of-Medians is good pivot

Theorem

|L| and |G| are both at most Tn[10 when p is median of medians.

Let B be a group (of b elements), m median of B:

m

> If m < p: at least three elements of B (m and two smaller) are in L

> If m> p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p
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Median-of-Medians is good pivot
Theorem

|L| and |G| are both at most Tn[10 when p is median of medians.

Let B be a group (of b elements), m median of B: I U e

> If m < p: at least three elements of B (m and two smaller) are in L
> If m> p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p

7
|L|2lo3 3n n
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Median-of-Medians is good pivot
Theorem

|L| and |G| are both at most Tn[10 when p is median of medians.

Let B be a group (of b elements), m median of B: I U e

> If m < p: at least three elements of B (m and two smaller) are in L
> If m> p: at least three elements of B (m and two larger) are in G

By definition of p, n/10 groups have m < p and n/10 have m > p

n 3n n
L ~3=20 — |G < —
10 10 10
n 3n in
IG|>—-3=— = |L|< —
10 10 10
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Finding Median of Medians

Have n/5 elements (median of each group). Want to find median.

What problem is this?
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Finding Median of Medians

Have n/5 elements (median of each group). Want to find median.

What problem is this? Median / Selection!
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Finding Median of Medians

Have n/5 elements (median of each group). Want to find median.
What problem is this? Median / Selection!

Recursion! Use same algorithm on array of medians.
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BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.
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BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A, k)
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BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A, k)

1. Group A into n/5 groups of 5, and let A’ be an array of size n/5 containing the median
of each group.

2. Let p=BPFRT(A’,n/10), i.e., recursively find the median p of A" (the
median-of-the-medians).
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BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A, k)

1. Group A into n/5 groups of 5, and let A’ be an array of size n/5 containing the median
of each group.

2. Let p=BPFRT(A’,n/10), i.e., recursively find the median p of A" (the
median-of-the-medians).
3. Split A using p as a pivot into L and G.

4. Recurse on the appropriate piece:

4.1 if |L| = k - 1 then return p.
4.2 if |L| > k - 1 then return BPFRT(L, k).
4.3 if |L| < k -1 then return BPFRT(G, k - |L| - 1).
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BPFRT Analysis

Let T(n) be (worst-case) running time on A of size n.
» Step 1: O(n) time
> Step 2: T(n/5) time
> Step 3: O(n) time
> Step 4: T(7n/10) time
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BPFRT Analysis

Let T(n) be (worst-case) running time on A of size n.
» Step 1: O(n) time
> Step 2: T(n/5) time
> Step 3: O(n) time
> Step 4: T(7n/10) time
T(n) < T(7n/10) + T(n/5) + cn
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BPFRT Analysis

Let T(n) be (worst-case) running time on A of size n.
» Step 1: O(n) time
> Step 2: T(n/5) time
> Step 3: O(n) time
> Step 4: T(7n/10) time
T(n) < T(7n/10) + T(n/5) + cn
Guess T(n) < 10cn:

T(n) <10¢c(7n/10) + 10c(n/5) + cn =9cn + cn = 10cn
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Deterministic O(nlog n) Quicksort

Can use this to get deterministic O(nlog n)-time Quicksort!

Jessica Sorrell Lecture 5 September 9, 2025 13/13



Deterministic O(nlog n) Quicksort

Can use this to get deterministic O(nlog n)-time Quicksort!
Use BPFRT(A, n/2) to choose median as pivot.
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Deterministic O(nlog n) Quicksort

Can use this to get deterministic O(nlog n)-time Quicksort!
Use BPFRT(A, n/2) to choose median as pivot.

Let T(n) be time on input of size n.
» BPFRT to find pivot takes O(n) time
> Splitting around pivot takes O(n) time

> Each recursive call takes T(n/2) time
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Deterministic O(nlog n) Quicksort

Can use this to get deterministic O(nlog n)-time Quicksort!
Use BPFRT(A, n/2) to choose median as pivot.

Let T(n) be time on input of size n.
» BPFRT to find pivot takes O(n) time
> Splitting around pivot takes O(n) time

> Each recursive call takes T(n/2) time

T(n)=2T(n/2) +cn = T(n) = ©(nlog n)
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