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Analysis

Do an increment, flips k bits == true cost is k.
» # 0's flipped to 1: 1
» # 1's flipped to 0: k-1
Flipping 1 to 0 paid for by bank! Costs 1, bank decreases by 1

== amortized cost at most 1 (cost of flipping 0 to 1) plus 1 (increase in bank for that bit)
=2

Global: Change in total bank is —=(k-1)+1=-k+2
== amortized cost =c+AL=k+ (-k+2) =2

Potential function: let ® = #1’s in counter.
= amortized cost = c+ AP =k + (-k+2) =2
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Introduction

Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

v

Insert(H, x): insert element x into heap H.

v

Extract-Min(H): remove and return an element with smallest key

v

Decrease-Key(H, x, k): decrease the key of x to k.
Meld(Hy, H>): replace heaps Hy and Hp with their union

v

Extra Operations:
» Find-Min(H): return the element with smallest key

» Delete(H, x): delete element x from heap H

Min-Heap, but can also do Max-Heap.
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Introduction
Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

» Insert(H, x): insert element x into heap H.

v

Extract-Min(H): remove and return an element with smallest key

v

Decrease-Key(H, x, k): decrease the key of x to k.
Meld(Hy, H>): replace heaps Hy and Hp with their union

v

Extra Operations:
» Find-Min(H): return the element with smallest key
» Delete(H, x): delete element x from heap H

Min-Heap, but can also do Max-Heap.

Note: x is a pointer to an element. No way to lookup, so need a pointer to an element to
change it.
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Obvious Approaches

Insert Extract-Min  Decrease-Key Meld

Linked List
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Obvious Approaches

Insert Extract-Min  Decrease-Key Meld

Linked List 0(1) O(n) o(1) o(1)
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Obvious Approaches

Insert Extract-Min  Decrease-Key Meld
Linked List o(1) O(n) o(1) o(1)
Sorted Array O(n) o(1) O(n) O(n)

Balanced Search Tree
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Obvious Approaches

Insert Extract-Min  Decrease-Key Meld
Linked List 0(1) O(n) o(1) o)
Sorted Array O(n) o(1) O(n) O(n)
Balanced Search Tree | O(logn)  O(logn) O(log n) O(n)
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Obvious Approaches

Insert Extract-Min  Decrease-Key Meld

Linked List 0(1) O(n) o(1) o(1)

Sorted Array O(n) o(1) O(n) O(n)

Balanced Search Tree | O(logn)  O(logn) O(log n) O(n)

Goal: get as many of these to O(1) as possible
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Obvious Approaches

Insert Extract-Min  Decrease-Key Meld

Linked List 0(1) O(n) o(1) o(1)

Sorted Array O(n) o(1) O(n) O(n)

Balanced Search Tree | O(logn)  O(logn) O(log n) O(n)
Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?
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Obvious Approaches

Insert Extract-Min  Decrease-Key Meld

Linked List 0(1) O(n) o(1) o(1)

Sorted Array O(n) o(1) O(n) O(n)

Balanced Search Tree | O(logn)  O(logn) O(log n) O(n)
Goal: get as many of these to O(1) as possible
Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other O(logn)?
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Today and State of the Art

State of the art: strict Fibonacci Heaps.

» Too complicated for this class, not practical. See CLRS 19 for Fibonacci Heaps.

Today: binary heaps (should be review), then binomial heaps

» Binomial heaps not quite as complicated as Fibonacci heaps, many of same core ideas
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Binary Heaps

» Complete binary tree, except possibly at bottom level.

» Heap order: key of any node no larger than key of its children.

parent
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Binary Heaps

» Complete binary tree, except possibly at bottom level.

» Heap order: key of any node no larger than key of its children.

parent

Properties: Representation:
» Since (almost) complete binary tree, » Pointers to root and rightmost leaf
depth ©(log n) » Every node has pointers to parent and
» Min must be at root children
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Insert(H, x)

Preserve heap structure: insert x into next
open spot (bottom right, or left of new level if
bottom level full)

» Might violate heap order!

add key to heap
(violates heap order)
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Insert(H, x)

Preserve heap structure: insert x into next S ., | ller than i
open spot (bottom right, or left of new level if wim up-- as fong as x smatier than its
bottom level full) parent, swap with parent

» Might violate heap order!

add key to heap
(violates heap order)
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Insert(H, x)

Preserve heap structure: insert x into next S ., | ller than i
open spot (bottom right, or left of new level if wim up-- as fong as x smatier than its
bottom level full) parent, swap with parent

» Might violate heap order!

add key to heap
(violates heap order)

Running time: O(log n) worst case (also amortized) via depth

September 23, 2025 7/21
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Extract-Min(H)

Min is definitely at root. How to remove it while still have binary tree?
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Extract-Min(H)
Min is definitely at root. How to remove it while still have binary tree?
» Swap root with final heap element, remove former root.

» Sink down: swap root with smaller of its children until heap order restored

element to
remove

exchange
with root

sink down

violates
heap order

remove
from heap
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Extract-Min(H)
Min is definitely at root. How to remove it while still have binary tree?
» Swap root with final heap element, remove former root.

» Sink down: swap root with smaller of its children until heap order restored

element to
remove

exchange
with root

sink down

heap order

remove
from heap

Running time: O(log n) worst case (via depth). Amortized: O(1) (not obvious)
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Decrease-Key(H, x, k)

Decrease key of x to k, “swim up” until heap order restored.

Running time: O(log n) (depth)
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Me|d(H1, H2)
Assume both heaps have size n.
» Obvious approach: insert each element of H, into Hy. Time: O(nlog n)
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Me|d(H1, H2)
Assume both heaps have size n.
» Obvious approach: insert each element of H, into Hy. Time: O(nlog n)

Better:
> Insert all elements of Hy all at once (not fixing heap order)
» Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.
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Me|d(H1, H2)

Assume both heaps have size n.
» Obvious approach: insert each element of H, into Hy. Time: O(nlog n)
Better:

> Insert all elements of Hy all at once (not fixing heap order)

» Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.
Correctness: ends up in heap order (induction, or contradiction)
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Me|d(H1, H2)
Assume both heaps have size n.

» Obvious approach: insert each element of H, into Hy. Time: O(nlog n)

Better:

> Insert all elements of Hy all at once (not fixing heap order)

» Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)
Running Time:

» Inserting: O(n) total
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Me|d(H1, H2)
Assume both heaps have size n.

» Obvious approach: insert each element of H, into Hy. Time: O(nlog n)

Better:

> Insert all elements of Hy all at once (not fixing heap order)

» Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.
Correctness: ends up in heap order (induction, or contradiction)
Running Time:
» Inserting: O(n) total
» Sinking down:
> Nodes at height h might have to sink down h.
» At most n/2" nodes at height h
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Me|d(H1, H2)
Assume both heaps have size n.

» Obvious approach: insert each element of H, into Hy. Time: O(nlog n)

Better:

> Insert all elements of Hy all at once (not fixing heap order)

» Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.
Correctness: ends up in heap order (induction, or contradiction)
Running Time:
» Inserting: O(n) total
» Sinking down:
> Nodes at height h might have to sink down h.
» At most n/2" nodes at height h

logn n logn h
h(—) -nY —<0
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Amortized Extract-Min
Weights: w(x) = depth of x

» Root has weight 0, its children have weight 1, etc.
Potential: ®(H) =Y, w(x)
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Amortized Extract-Min

Weights: w(x) = depth of x

» Root has weight 0, its children have weight 1, etc.
Potential: ®(H) =Y, w(x)

Insert: A® = O(logn) = amortized cost < O(log n) + O(log n) = O(log n)
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Amortized Extract-Min

Weights: w(x) = depth of x

» Root has weight 0, its children have weight 1, etc.
Potential: ®(H) =Y, w(x)

Insert: A® = O(logn) = amortized cost < O(log n) + O(log n) = O(log n)
Extract-Min:

» True cost: height h = O(log n) of tree, plus O(1) (for initial swap).
» A®: one less node at depth h = A® =-h
» Amortized cost: h+ O(1) - h= O(1).
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Amortized Extract-Min

Weights: w(x) = depth of x
» Root has weight 0, its children have weight 1, etc.
Potential: ®(H) =Y, w(x)
Insert: A® = O(logn) = amortized cost < O(log n) + O(log n) = O(log n)
Extract-Min:

» True cost: height h = O(log n) of tree, plus O(1) (for initial swap).
» A®: one less node at depth h = A® =-h
» Amortized cost: h+ O(1) - h= O(1).

Uses Inserts to “pay for" Extract-Mins.
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Improvements
Downsides of binary heaps:

» Do at least as many Inserts as Extract-Mins! Want O(1) Insert, O(log n) Extract-Min
» Meld in O(n) is better than trivial, but still not great.
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Improvements

Downsides of binary heaps:

» Do at least as many Inserts as Extract-Mins! Want O(1) Insert, O(log n) Extract-Min

» Meld in O(n) is better than trivial, but still not great.

Binomial Heaps:
> Get Insert down to O(1) (amortized)
» Meld in O(log n) (worst-case and amortized)
» Downside: O(log n) Extract-Min, O(log n) Find-Min
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Improvements

Downsides of binary heaps:
» Do at least as many Inserts as Extract-Mins! Want O(1) Insert, O(log n) Extract-Min
» Meld in O(n) is better than trivial, but still not great.

Binomial Heaps:
> Get Insert down to O(1) (amortized)
» Meld in O(log n) (worst-case and amortized)
» Downside: O(log n) Extract-Min, O(log n) Find-Min

Fibonacci Heaps:
» Everything O(1) (amortized) except O(log n) Extract-Min (amortized)
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Binomial Heaps

Not based on binary tree anymore! Based on binomial tree.
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Binomial Heaps

Not based on binary tree anymore! Based on binomial tree.
» By = single node.

» B = one By_; linked to another By_7.

B,

o)

By B, B;

B3

B,
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Structure Lemma

Lemma
The order k binomial tree By has the following properties:
1. Its height is k.
2. It has 2% nodes
3. The degree of the root is k
4. If we delete the root, we get k binomial trees Bg_1,. .., By.

Bk+1

A M
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Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is

exactly 0 or 1 tree of order k for each integer k.

Keep roots of trees in linked list, from smallest order (not key!) to largest

(e
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Binomial Heap
Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is
exactly 0 or 1 tree of order k for each integer k.

Keep roots of trees in linked list, from smallest order (not key!) to largest

(e

With n items, no choices about which binomial trees exist in heap!
» Write n in binary: byb,_1...byby.
» Tree By exists if and only if b =1
Jessica Sorrell
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Binomial Heap
Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is
exactly 0 or 1 tree of order k for each integer k.

Keep roots of trees in linked list, from smallest order (not key!) to largest

(e

With n items, no choices about which binomial trees exist in heap!
» Write n in binary: byb,_1...byby.
» Tree By exists if and only if b =1

== at most log n trees, and by lemma each has height < logn
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Analysis: Beginning

Analyze all operations both worst-case and amortized.
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Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: ®(H) = # trees in H
» |nitially 0

» Never negative
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Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: ®(H) = # trees in H
» |nitially 0

» Never negative

Find-Min(H):
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Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: ®(H) = # trees in H
» |nitially 0

» Never negative

Find-Min(H): Scan through roots of trees in H, return min
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Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: ®(H) = # trees in H
» |nitially 0

» Never negative

Find-Min(H): Scan through roots of trees in H, return min

» Correct: each tree heap-ordered, so global min one of the roots
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Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: ®(H) = # trees in H
» |nitially 0

» Never negative

Find-Min(H): Scan through roots of trees in H, return min
» Correct: each tree heap-ordered, so global min one of the roots
» Worst-case: O(log n)

» Amortized: doesn't change potential, also O(log n).

Jessica Sorrell Lecture 9: Priority Queues and Heaps September 23, 2025

16 /21



Meld(Hi, Ha): Link

Key operation: we'll use Meld to do Insert and Extract-Min
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Meld(Hi, H»): Link
Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: Hi, Hy both single trees of same order k.
» Union has size 2k + 2k = 2k+1. just a single By.q
» Easy to make a By, out of two By's!
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Meld(Hi, H»): Link
Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: Hi, Hy both single trees of same order k.
» Union has size 2k + 2k = 2k+1. just a single By.q
» Easy to make a By, out of two By's!

/ 6
8 29 10 44

30 23 22 48 31 17
45 32 24 50
& Hi H2
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Meld(Hi, H»): Link
Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: Hi, Hy both single trees of same order k.
» Union has size 2k + 2k = 2k+1. just a single By.q
» Easy to make a By, out of two By's!

/ 6
8 29 10 44

30 23 22 48 31

45 32 24 50

55

Jessica Sorrell Lecture 9: Priority Queues and Heaps

Link of two trees.

» Worst-case time: O(1) (create a
single link). Normalize: call 1

» A®: two trees to one: -1

» Amortized cost:
1-1=0=0(1).
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Meld(Hy, H>): General Case
9
(Almost) just like binary addition!

7 -

8 29° 10 44 37

A

307 23 22 48 31 17

/1| | ® @ @

4’ 32 24 50 |

| za/3|3 25
+ 55 |

4

6 3 N 2)eeeneeraenees
& o @ 5 @ ®
& @ @) @ F® ©
@ ) @
)
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Meld(Hy, H>): Analysis

Easy to prove correct (exercise for home).

Running time:
» Worst case: O(1) per “order” k = < O(log n)

» Amortized: Potential does not go up, but could stay the same
== O(log n) amortized
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Insert(H, x)

Use Meld:
» Create new heap H’ with one By consisting of just x
» Meld(H, H'")

Correctness: Obvious
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Insert(H, x)

Use Meld:
» Create new heap H’ with one By consisting of just x
» Meld(H, H'")

Correctness: Obvious

Running Time:
» Worst case: O(logn) (via Meld)
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Insert(H, x)

Use Meld:
» Create new heap H’ with one By consisting of just x
» Meld(H, H'")

Correctness: Obvious

Running Time:
» Worst case: O(logn) (via Meld)

> Amortized:
> Like incrementing a binary counter!
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Insert(H, x)

Use Meld:
» Create new heap H’ with one By consisting of just x
» Meld(H, H'")

Correctness: Obvious

Running Time:
» Worst case: O(logn) (via Meld)

» Amortized:

> Like incrementing a binary counter!

> If we link k trees, potential goes down by k-1

» Cost = # links plus 1 (for making new heap)

» Amortized cost = k+1+Ad =k+1-(k-1)=2=0(1)
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Extract-Min(H)

Use Meld again!
» O(log n) to Find-Min: one of the roots.
» Delete and return this root: tree turns into a new heap!
» Meld with original heap (minus the tree)

Correctness: Obvious
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Extract-Min(H)

Use Meld again!
» O(log n) to Find-Min: one of the roots.
» Delete and return this root: tree turns into a new heap!
» Meld with original heap (minus the tree)

Correctness: Obvious

Running Time:
» Worst-Case: O(log n) from creating new heap, Meld

» Amortized:

> Potential can go up! But by at most log n
» Amortized time at most O(log n) +log n = O(log n)
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